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ABSTRACT 

The classical Hausman pretest (HT) is used to specified the right model between 

random and fixed effect panel data models. However, in the presence of 

heteroscedastic error variances and influential observations (IOs) in the data set, 

it may not correctly identify the right model. Therefore, this motivated us to 

proposed a new method termed Robust Hausman Test (RHTFIID) which employed 

residuals from weighted least square (WLS) instead of OLS in the construction of 

heteroscedasticity consistent covariance matrix (HCCM) estimator. The 

weighting method is based on an efficient High Leverage Points (HLPs) detection 

method called Fast Improvised Influential Distance (FIID) which down weight 

only vertical outliers and bad HLPs. The good HLPs were allowed in the 

estimation as they might contribute to the precision of the estimate. The result 

indicates that the new proposed RHTFIID outperformed the existing classical 

Hausman pretest by identifying the right model with and without 

heteroscedasticity and influential observations.

 

INTRODUCTION 

In panel data analysis the daunting question of which 

model to choose between fixed and random effect has 

become subject of discussion. This is not easy as it might 

seem (Baltagi, 2008). In fact, the fixed versus random 

effects issue has generated a hot debate in the biometrics 

and statistics literature since 1960’s. Some researchers 

were in support of the fixed effects (FE) model (Mundlak, 

1961; Wallace and Hussain, 1969). However, Balestra 

and Nerlove (1966) were advocates of the random effect 

(RE) model. Later, Hausman (1978) proposed a 

specification test which is based on the difference 

between the fixed and random effects estimators. The 

classical Hausman pretest is used to choose between 

random and fixed effect panel data models. However, in 

the presence of heteroscedastic error variances and 

influential observations (IOs) in the data set, it may not 

correctly identify the right model. Hausman test (HT) is a 

common tool, used in many articles and textbooks in 

Econometrics (see Wooldridge, 2002; Hsiao, 2003; 

Baltagi, 2005; Greene, 2008; Muhammad et al. 2019). 

In this paper, a robust Hausman test is proposed based on 

HLPs/IOs detection measure of Habshah et al. (2021) 

called Fast Improvised Influential Distance (FIID) and 

Robust Heteroscedasticity Consistent Covariance Matrix 

(RHCCM) estimator. The performance of the newly 

proposed robust method is assessed by some well-known 

real data sets and Monte Carlo simulation 

 

MATERIAL AND METHOD 

Consider a panel data model as, 

𝑦𝑖𝑡 =  𝑢𝑖 +  𝑥𝑖𝑡
′ 𝛽 + 𝜀𝑖𝑡 ,   𝑖 = 1,2, … , 𝑛     and     

𝑡 = 1,2, … , 𝑇          (1) 

where, 𝑦𝑖𝑡 is the response variable, 𝑥𝑖𝑡  is the explanatory 

variable, 𝑢𝑖 is the unobserved time-invariant effects and 

𝜀𝑖𝑡 is the error term (idiosyncratic error) that is assumed 

to be normal, uncorrelated across individual units and 

time. 

Hausman (1978) proposed a pretest for panel data model 

in order to decide whether the subsequent inference will 

be carried out using the fixed effects model or the random 

effects model. If the HT rejects the null hypothesis of no 

correlation between the explanatory variables and 

unobserved time invariant effect then the fixed effects 

model is chosen for subsequent inference, otherwise the 

random effects model is chosen. The test is based on the 

difference between the vectors of the coefficient of the 

estimates. The choice of the appropriate model is based 

on information about the individual-specific components 

and the exogeneity of the explanatory variables. 

The null and alternative hypotheses are: 
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H0: The appropriate model is Random Effects. There is 

no correlation between the error term and the explanatory 

variables in the panel data model. 

𝐶𝑜𝑣(𝑢𝑖 , 𝑥𝑖𝑡) = 0 

H1: The appropriate model is Fixed Effects. The 

correlation between the error term and the explanatory 

variables in the panel data model is statistically 

significant. 

𝐶𝑜𝑣(𝑢𝑖 , 𝑥𝑖𝑡) ≠ 0 

 

Table 1: Properties of random and fixed effect models estimators  

Model Hypothesis H0 is true H1 is true 

Random Effect (RE) 𝐻0: 𝐶𝑜𝑣(𝑢𝑖 , 𝑥𝑖𝑡) = 0 

Exogeneity 

Consistent 

Efficient 

Inconsistent 

 

Fixed Effect (FE) 𝐻1: 𝐶𝑜𝑣(𝑢𝑖 , 𝑥𝑖𝑡) ≠ 0 

Endogeneity 

Consistent 

Inefficient 

Consistent 

 

 

Hausman (1978) proved that the conventional Hausman 

statistic (HT) is asymptotically Chi-square distribution 

with p degree of freedom, where p is the number of 

regressors. The null hypothesis is rejected when the test 

statistic HT exceeds the Chi-square value at a given value 

of significant level. Meaning that, the null hypothesis will 

be rejected when the p-value is less than 𝛼 level of 

significant. The HT is defined as, 

𝐻𝑇 = (�̂�𝑅𝐸 − �̂�𝐹𝐸)′(𝑣𝑎𝑟(�̂�𝑅𝐸) − 𝑣𝑎𝑟(�̂�𝐹𝐸))−1(�̂�𝑅𝐸 −

�̂�𝐹𝐸)~𝜒2
(𝑝)                   (2) 

where, p is the number of explanatory variables, �̂�𝑅𝐸  and 

�̂�𝐹𝐸  are the classical random and fixed effect estimates. 

The variances of �̂�𝐹𝐸  and �̂�𝑅𝐸  estimates are obtained as 

follows; 

𝑉𝑎𝑟(�̂�𝐹𝐸) = �̂�𝑢
2(𝑋′𝑋)−1 

where �̂�𝑢
2 = �̂�2 (𝑛𝑇 − 𝑛 − 𝑝)⁄  and �̂� = 𝑦𝑖𝑡 − 𝑥𝑖𝑡�̂�𝐹𝐸 

(OLS residuals of the demeaned transformed data using 

Mean-centering). 

𝑉𝑎𝑟(�̂�𝑅𝐸) = �̂�𝜀
2(�̃�′�̃�)−1 

where�̂�𝜀
2 = �̂�𝜏

2 − �̂�𝑢
2,�̂�𝜏

2 = �̂�2 (𝑛𝑇 − 𝑘)⁄  and �̂� = 𝑦𝑖𝑡 −

�̃�𝑖𝑡�̂�𝑅𝐸 (OLS idiosyncratic residuals of the partially 

demeaned transformed data using Mean-centering) 

 

Proposed Robust Hausman Test 

It has been noticed that the HT is based on the OLS 

estimates of both FE and RE models. Maronna (2006) 

pointed out that in the presence HLPs the OLS method 

failed to correctly estimate the parameters which makes 

the HT test statistic very sensitive and easily affected by 

HLPs. To remedy this problem, the robust FE and RE 

estimates based on FIID proposed by Habshah et al. 

(2021) will be used in the construction of the proposed 

Robust Hausman test denoted by RHTFIID. In the RHTFIID 

test, all the OLS estimates are replaced by weighted least 

squares (WLS) estimates based on FIID weighting 

method (WLSFIID). The proposed RHTFIID test is given by, 

𝐻𝑇𝐹𝑀𝐺𝑡 = (�̂�𝐹𝐼𝐼𝐷(𝑅𝐸) − �̂�𝐹𝐼𝐼𝐷(𝐹𝐸))
′

(𝑣𝑎𝑟 (�̂�𝐹𝐼𝐼𝐷(𝑅𝐸)) −

𝑣𝑎𝑟 (�̂�𝐹𝐼𝐼𝐷(𝐹𝐸)))
−1

(�̂�𝐹𝐼𝐼𝐷(𝑅𝐸) − �̂�𝐹𝐼𝐼𝐷(𝐹𝐸)) ~ 𝜒2
(𝑝) 

     (3) 

 

where, p is the number of explanatory variables, 

�̂�𝐹𝐼𝐼𝐷(𝑅𝐸) and �̂�𝐹𝐼𝐼𝐷(𝐹𝐸) are the robust random and 

fixed effects estimate. Moreover, the variances of 

�̂�𝐹𝐼𝐼𝐷(𝐹𝐸) and �̂�𝐹𝐼𝐼𝐷(𝑅𝐸)  estimates are obtained based 

on RHCCM estimator (HC5) as follows; 

𝑉𝑎𝑟(�̂�𝐹𝐼𝐼𝐷(𝐹𝐸))

= diag{(𝑋′𝑊𝑋)−1𝑋′𝑊Φ̂5w𝑊𝑋(𝑋′𝑊𝑋)−1} 

where, 𝑊 is the FIID weight function, Φ̂5w =

diag {
𝑢𝑖

2

√(1−hi
∗)

αi
∗
} for 𝑖 = 1, 2, … , 𝑛𝑇 with αi

∗ =

min {
hi

∗

h∗ , max {4,
kh∗

max

h∗ }}. �̂� and 𝑋 here are the OLS 

residuals of the demeaned transformed data and transform 

explanatory variable using MM-centering respectively. 

 

𝑉𝑎𝑟(�̂�𝐹𝐼𝐼𝐷(𝑅𝐸))

= diag{(�̃�′𝑊�̃�)−1�̃�′𝑊Φ̈5w𝑊�̃�(�̃�′𝑊�̃�)−1} 

where, 𝑊 is the FIID weight function, Φ̈5w =

diag {
�̂�𝑖

2

√(1−hi
∗)

αi
∗
} for 𝑖 = 1, 2, … , 𝑛𝑇 with αi

∗ =

min {
hi

∗

h∗ , max {4,
kh∗

max

h∗ }}. 𝜀̂ and �̃� here are the OLS 

idiosyncratic residuals of the partially demeaned 

transformed data and transform explanatory variable 

using MM-centering. 

 

Distribution of Proposed RHTFIID Statistic 

The distribution of RHTFIID test is hard to proof. It is 

anticipated to approximately follow same distribution as 

HT (Chi-square distribution with p degree of freedom). 

The RHTFIID statistic will be verified to have similar 

distribution as HT statistic.  This will make it more 

convenient for RHTFIID test to be comparable with the HT 

test in specifying the right model for panel data as used 

by Muhammad et al. (2019) for Robust Whites Test. 

Moreover, the null hypothesis of no correlation between 

the explanatory variables and unobserved time invariant 

effect is rejected if the RHTFIID statistic exceeds the Chi-
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square value with p degree of freedom at a given value of 

significance level where p is the number of regressors. 

We hypothesized that the RHTFIID test asymptotically 

follows Chi-square with p degree of freedom. To verify 

this distribution, consider a panel data regression model 

given in eqt (1) with three independent variables. The data 

was generated in the same way as Muhammad et al. 

(2021). Four sample sizes were considered 𝑛 = 10, 15, 

20, 25 with corresponding 𝑡 = 15, 20, 25, and 30. 

Followed by estimating the FE and RE models using 

classical OLS and robust WLSFIID for both conventional 

HT and RHTFIID, respectively. The distribution for the 

comparison will be Chi-square distribution with 3 degree 

of freedom (since p=3 number of regressors). 

The test statistic HT and RHTFIID are computed for each 

sample size. Figure 1 shows the Cumulative Density 

Function (CDF) plot for Chi-square with 3 degree of 

freedom and CDF plots for HT and RHT based on their 

Lagrange Multiplier for some sample sizes. It can be 

observed that the CDF of HT and RHT are following the 

CDF of Chi-square distribution with 3 degree of freedom. 

The plots show that both HT and RHT statistics are 

asymptotically following Chi-squared distribution with 3 

degree of freedom. 

The mean and variance of the Lagrange Multiplier for HT 

and RHTFIID had also been computed for each sample. 

The process is repeated for 1,000 times and the values of 

their mean and variance are calculated. If HT and RHTFIID 

statistics follow Chi-square distribution with 3 degree of 

freedom, their mean and variance shall be equal to 3 and 

6, respectively. The results are shown in Table 2. It can 

be seen very clearly that the mean and variance of both 

HT and RHTFIID statistics are reasonably closed to 3 and 

6, respectively. The values of mean and variance are 

getting closer to the expected mean and variance with the 

increase of sample size. This finding supports that the HT 

and RHTFIID statistics are asymptotically following the 

Chi-square distribution with 3 degree of freedom.  

The scientific method of Cramer-von Mises one sample 

test (Choulakian et al., 1994) is applied to verify that both 

HT and RHT statistics follow Chi-square distribution 

with 3 degree of freedom.  Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the 

observed values in increasing order. The Cramèr-von 

Mises one sample test statistic is given by, 

𝑇 =
1

12𝑛
+ ∑ [

2𝑖 − 1

2𝑛
− 𝐹(𝑥𝑖)]

2𝑛

𝑖=1

 

Where 𝐹(𝑥𝑖) is the cumulative distribution of the 

hypothesized function. The 5, 10, 15, 20,.., until 95 

percentiles (constant increase of 5 percentile) are 

obtained for the Lagrange Multiplier based on HT and 

RHTFIID for each sample size.  The Cramer-von Mises one 

sample test is then carried out for each sample size. The 

null hypothesis of no difference between HT and RHTFIID 

statistics for Chi-square distribution with 3 degree of 

freedom will be rejected if the p-value is less than 0.05 

significance level. The results are presented in Table 3. 

In addition, the most powerful Anderson-Darling test 

(Rahman et al., 2006) is applied to reaffirm that both HT 

and RHTFIID statistics follow Chi-square distribution with 

3 degree of freedom. Again, let 𝑥1, 𝑥2, … , 𝑥𝑛 be the 

observed values in increasing order. The Anderson-

Darling test statistic is given by, 

𝐴2 = −𝑛 −
1

𝑛
∑(2𝑖 − 1). [ln 𝐹(𝑥𝑖) + ln(1

𝑛

𝑖=1

− 𝐹(𝑥𝑛−𝑖+1)] 
where𝐹(𝑥𝑖) is the cumulative distribution of the 

hypothesized function. The same procedure discussed in 

Cramer-von Mises one sample test above is followed to 

get the 5 to 95 percentiles of the Lagrange Multiplier 

based on HT and RHTFIID test for the same sample sizes 

and perform the Anderson-Darling test. The null 

hypothesis is that HT and RHTFIID statistics follow Chi-

square distribution with 3 degree of freedom. The null 

hypothesis will be rejected if the p-value is less than 0.05 

significance level. The findings are exhibited in Table 4.  

It is very encouraging to see that all the p-values are 

greater than 0.05 significance level thorough the studies. 

This finding reinsures that HT and RHTFIID statistics are 

following Chi-square distribution with 3 degree of 

freedom.  

 

Simulation Study and Real Data Examples 

In this paper, we used several real data sets and Monte 

Carlo simulation to evaluate the performance of the 

proposed robust Hausman test (RHTFIID) and the existing 

Hausman test (HT). 

 

Monte Carlo Simulation Studies 

A Monte Carlo simulation based on RE model has been 

generated. The percentage of null rejection rate has been 

computed. In this case the method that has the lowest 

percentage of null rejection is considered the best.  

Consider the panel data model given by eqt (1). Three 

explanatory variables (𝑥𝑖𝑡1, 𝑥𝑖𝑡2, 𝑥𝑖𝑡3) and 𝑢𝑖were 

generated from standard normal distribution. The true 

parameters 𝛽0 = 𝛽1 = 𝛽2 = 𝛽3 = 1, 𝜀𝑖𝑡~𝑁(0, 𝜎𝜀
2). 

Three sample sizes 𝑛 = 5, 10 and 15 with the 

corresponding 𝑡 = 10, 15 and 20 were replicated twice to 

form 𝑛 = 10, 20, 30 and 𝑡 = 20, 30, 40 respectively, in 

order to create heteroscedasticity.  The strength (degree) 

of heteroscedasticity is measured by 𝜆 = max(𝜎𝜀
2) /

min(𝜎𝜀
2).  Following the idea of (Lima et. al. 2009) the 

skedastic function is defined as 𝜎𝜀
2 = exp{𝑐1𝑥𝑖𝑡1 +

𝑐1𝑥𝑖𝑡2}, 𝑐1can be chosen between 0 and 1. For 𝑐1 = 0.25 

the value of 𝜆 = 12.46 and for 𝑐1 = 0.65 the value of 𝜆 =
56.75. The value of 𝜆 indicate the degree of the 

heteroscedasticity in the data, whereby for 

homoscedasticity 𝜆 = 1. Regular observations for both X 

and y were replaced with data points generated from 
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normal distribution 𝑁(10,1) at 1%, 2%, 3%, 4% and 5% 

contamination level for all the sample sizes at the average 

of 2000 replications.  

 

Real Data Examples 

Airline Data set: A panel data set for six airline firms was 

used, taken from Greene (2008). The data set contained 

90 observations for the period (1970 to 1984) with 

response variable cost and three predictor variables 

(output, fuel price, and load factor). A multiple linear 

panel data model was constructed to study the efficiency 

in production of airline services. 

The airline data was modified by inflating the explanatory 

variables of the first observation by 10 in order to create 

1 HLP contamination in the data set. Secondly, the 30th 

observation was also inflated in the same way in order to 

form 2 HLPs contamination in the data. 

 

Grunfeld data set 

The first 5 firms of Grunfeld (1958) data set containing 

100 observations were used. This data set was taken from 

Kleiber and Zeileis (2008) contains 20 annual 

observations for 11 US firms for the years 1935–1954. 

Three variables real gross investment (invest) as response 

variable, real value of the firm (value) and real value of 

the capital stock (capital) as explanatory variables were 

observed. These data have been used in many textbooks 

of econometrics. 

We modified the Grunfeld data by inflating the 

explanatory variables of observation 19 by 100 to create 

1 bad HLP in the data set, and we also inflate observation 

20 in the same way as observation 19 making another data 

set with 2 HLPs. 

 

Artificial data set 

An artificial heteroscedastic panel data set with n=6 and 

t=20 number of observations was generated.  A sample of 

n=3 and t=10 were replicated twice to form n=6 and t=20 

respectively. The response variable is generated in the 

same way as eqt (1), the explanatory variables and 

individual effect (𝑢𝑖) are generated from normal 

distribution 𝑁(10,1) and 𝑁(0,1), respectively. The true 

parameters 𝛽0 = 𝛽1 = 𝛽2 = 𝛽3 = 1, 𝜀𝑖𝑡~𝑁(0, 𝜎𝜀
2). The 

skedastic function is defined as 𝜎𝜀
2 = exp{𝑐1𝑥𝑖𝑡1} (Lima 

et al. 2009) where the value of 𝑐1 = 0.75 was chosen such 

that 𝜆 ≈ 42. The value of 𝜆 indicate the degree of the 

heteroscedasticity in the data, whereby for 

homoscedasticity, 𝜆 = 1. The strength (degree) of 

heteroscedasticity is measured by 𝜆 = max(𝜎𝜀
2) /

min(𝜎𝜀
2). 

The artificial heteroscedastic panel data set has been 

modified by introducing bad HLPs, the first observation 

was inflated by 10 for all the explanatory variables to 

form a data set with 1 bad HLP contamination. Also, the 

last observation was inflated similar to the first 

observation to form a data set with 2 HLPs contamination

 

RESULT AND DISCUSSION  
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Figure 1: CDF of Chi-square, HT and RHT for some sample sizes  

 

The coefficient of determination 𝑅2 was computed when 

the Lagrange Multiplier of HT and RHTFIID tests are 

regressed versus the theoretical Chi-square. This 

coefficient is used to measure the quality of the fitted 

model (Richard and Dean, 2002). The results are 

presented in Table 2. The high value of 𝑅2 indicates that 

HT and RHTFIID statistics follow Chi-square distribution 

with 3 degree of freedom.

  

Table 2: Mean and Variance of HT and RHTFIID Statistic, 𝑅2 of Test Statistic of HT and RHT and Theoretical 

Chi-Square  

Tests Values 

Samples 

n=10 

t=15 

n=15 

t=20 

n=20 

t=25 

n=25 

t=30 

 

HT 

Mean 3.1097 3.0651 3.0101 3.0201 

Variance 6.1209 5.9347 5.9204 6.0302 

𝑅2 0.9797 0.9817 0.9823 0.9799 

 

RHTFIID 

Mean 3.1095 3.0395 3.0197 3.0198 

Variance 6.1221 5.9815 5.9210 5.9209 

𝑅2 0.9795 0.9809 0.9796 0.9798 

 

It is very interesting to see that all the p-values are greater 

than 0.05 significance level for all the sample sizes 

examined. This finding shows that HT and RHTFIID 

statistics are following Chi-square distribution with 3 

degree of freedom.

  

Table 3: Cramer-von Mises One Sample Test for Testing the Distribution of HT and RHTFIID Statistics 

Test 
Cramèr-von 

Mises 

Samples 

n=10 

t=15 

n=15 

t=20 

n=20 

t=25 

n=25 

t=30 

HT 
T  0.0381 0.0550 0.0365 0.0872 

p-values 0.6983 0.4218 0.7284 0.1563 

RHTFIID 
T 0.0301 0.0282 0.0554 0.0712 

p-values 0.8346 0.8611 0.4159 0.2552 
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Table 4: Anderson-Darling Test for Testing the Distribution of HT and RHTFIID Statistics  

Test 
Anderson-

Darling 

Samples 

n=10 

t=15 

n=15 

t=20 

n=20 

t=25 

n=25 

t=30 

HT  
𝐴2 0.4138 0.5414 0.6343 0.7089 

p-values 0.8658 0.6623 0.5611 0.4956 

RHTFIID 
𝐴2 0.4134 0.5326 0.6474 0.7242 

p-values 0.8669 0.6733 0.5488 0.4836 

 

Table 5 to 7 exhibit the performance of the proposed 

methods (RHTFIID) and the existing methods (HT) in a 

simulated heteroscedastic random effect panel data with 

different sample sizes and HLPs contamination level. The 

results show that all the proposed RHTFIID was more 

efficient than the existing methods, by providing smallest 

percentage of null rejection, which indicate the RHTFIID 

fail to reject the null hypothesis of random effect model 

is appropriate.

 

Table 5: Percentage of Null rejection rates of Hausman test for Random Effect simulated panel data  n=10  t=20 

HLPs 

Con. 

𝝀 = 𝟏𝟐. 𝟒𝟔 𝝀 = 𝟓𝟔. 𝟕𝟓 

HT RHTFIID HT RHTFIID 

0% 0.00 0.00 0.00 0.00 

1% 1.35 < 10-6 1.70 < 10-6 

2% 2.10 < 10-6 3.15 < 10-6 

3% 5.61 < 10-6 5.25 0.05 

4% 10.65 0.05 10.05 0.10 

5% 17.75 0.10 18.30 0.10 

 

Table 6: Percentage of Null rejection rates of Hausman test for Random Effect simulated panel data  n=20  t=30 

HLPs 

Con.  

𝝀 = 𝟏𝟐. 𝟒𝟔 𝝀 = 𝟓𝟔. 𝟕𝟓 

HT RHTFIID HT RHTFIID 

0% 0.00 0.00 0.00 0.00 

1% 1.20 < 10-6 2.05 < 10-6 

2% 2.05 < 10-6 1.90 < 10-6 

3% 2.85 < 10-6 2.95 < 10-6 

4% 3.85 < 10-6 4.20 0.05 

5% 8.00 0.05 9.55 < 10-6 

 

Table 7: Percentage of Null rejection rates of Hausman test for Random Effect simulated panel data  n=30  t=40 

HLPs 

Con. 

𝝀 = 𝟏𝟐. 𝟒𝟔 𝝀 = 𝟓𝟔. 𝟕𝟓 

HT RHTFIID HT RHTFIID 

0% 0.00 0.00 0.00 0.00 

1% 0.85 < 10-6 1.10 < 10-6 

2% 1.05 < 10-6 1.60 < 10-6 

3% 2.15 < 10-6 2.10 < 10-6 

4% 2.95 < 10-6 2.50 < 10-6 

5% 3.80 < 10-6 4.85 < 10-6 

Figure 2 and 3 indicates the presence of heteroscedasticity 

and Good Leverage Points GLPs (observation 28) in the 

data. The existence of funnel shape in Figure 2 indicates 

the presence heteroscedasticity in the data. 
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Figure 2: Plot of pooled OLS residuals versus fitted Figure 3: Plot of FIID for airline data values for airline 

data 

 

The result from Table 8 show that both HT and RHTFIID 

fail to reject H0 in the absence of HLPs, but in the 

presence of 1 HLPs and 2 HLPs the HT reject H0. This 

indicates that the proposed method (RHTFIID) was found 

to be the best and the most resistance against the effect of 

HLPs as it provides the same result (fail to reject H0) for 

both original and modified data sets (with HLPs).

 

Table 8: Power of Hausman tests for original and modified Airline data set, n = 6, t = 15, p = 3. The critical 

value: 𝜒(3,   𝛼=0.05)
2 = 7.818 

Tests Original data Modified data with  

(1 HLP) 

Modified data with  

(2 HLPs) 

Value of 

statistic 

P-value 

 

Value of 

statistic 

P-value 

 

Value of 

statistic 

P-value 

 

HT 1.6150a 0.6560 8.3462b 0.0394 67.4527b 1.4e-14 

RHTFIID 1.0841a 0.7809 0.6372a 0.8878 0.6455a 0.8859 

Note: a=fail to reject Ho, b=reject Ho and 𝛼 = 0.05 

 

Figure 4 and 5 indicates the presence of heteroscedasticity 

and GLPs (observation 41, 42, 67, 68, 73, 74) in the data. 

The presence of funnel shape in Figure 4 shows that 

heteroscedasticity exist in the data. 

 

  
Figure 4 Plot of pooled OLS residuals versus fitted 
values for grunfeld data 

Figure 5: Plot of FIID for grunfeld data 

 

 

 



Robust Hausman Pretest for Panel…  Sani et al. JOBASR2023 1(1): 27-35 

Journal of Basics and Applied Sciences Research  Volume 1(1) 34 

Table 9 shows that, the proposed RHTFIID provide the 

same result for both original and modified contaminated 

data set with almost equal p-value, but the HT in the 

presence of HLPs reject H0 while in the absence of HLPs 

(original data) fail to reject H0.

 

Table 9: Power of Hausman tests for original and modified first 5 firms of Grunfeld data, n = 5, t = 20, p = 2. 

The critical value: 𝜒(2,𝛼=0.05)
2 = 5.991 

Tests Original data Modified data with 1 HLP Modified data with 2 HLPs 

Value of 

statistic 

P-value Value of 

statistic 

P-value Value of 

statistic 

P-value 

HT 0.3962a 0.8202 38.723b 3.9e-09 49.939b 2.1e-09     

RHTFIID 0.4835a 0.7852 0.4972a 0.7798 0.3843a 0.8252 

Note: a=fail to reject Ho, b=reject Ho and 𝛼 = 0.05 

 

Figure 6 indicates the presence of heteroscedasticity due 

to presence of funnel shape produced in the plot. 

Similarly, Figure 7 indicates the presence of GLPs (41, 

42, 67, 68, 74) and IO (73) in the data set.

 

  
Figure 6: Plot of pooled OLS residuals versus fitted 
values for artificial data 

Figure 7: Plot of FIID for artificial data 

 

Table 10 presents the result of both the original and 

modified data sets which clearly indicates that RHTFIID 

method outperformed the existing method by providing 

same result for both original and modified contaminated 

data sets.

 

Table 10: Power of Hausman tests for original and modified Artificial data set n = 6, t = 20, p = 3. The Critical 

Value: 𝜒(3,   𝛼=0.05)
2 = 7.818 

Tests Original data Modified data with 1 HLP Modified data with 2 HLPs 

Value of 

statistic 

P-value Value of 

statistic 

P-value Value of 

statistic 

P-value 

HT 1.0e+17b 0.0000 -4.6e+12a 1.0000 -7.8e+12a 1.0000 

RHTFIID 3.1e+14b 0.0000 3.2e+14b 0.0000 3.4e+14b 0.0000 

Note: a=fail to reject Ho, b=reject Ho and 𝛼 = 0.05 

 

CONCLUSION 

The Hausman pretest is used to choose between models 

in panel data studies, which specifies whether random or 

fixed effects panel data model should be used. The test 

examines the presence of endogeneity in panel data 

model. The use of panel data gives considerable 

advantages over the time series or cross-sectional data, 

but the appropriate model to be used is of great 

importance for obtaining consistent and efficient results. 

However, presence of heteroscedasticity and a single high 

leverage point in a data set can mislead the result of 

Hausman pretest. Therefore, this paper provides a robust 

method for a Hausman pretest in the presence of 

heteroscedasticity of unknown form and Influential 

observations (IOs). The new proposed method (RHTFIID) 

used residuals from weighted least square (WLS) instead 
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of OLS residuals in the construction of heteroscedasticity 

consistent covariance matrix (HCCM) estimator. The 

weighting method used is based on very efficient HLPs 

detection measure (FIID), which down weight only 

vertical outliers and bad HLPs. The good HLPs were 

allowed in the estimation as they might contribute to the 

precision of the estimate. The result indicates that the new 

proposed RHTFIID outperformed the existing HT method 

and indicates it resistivity to effect of HLPs and 

heteroscedasticity. This good performance of the 

proposed method is due the efficiency of FIID weighting 

method which has less swamping and masking effect. 

 

REFERENCES 

Baltagi, B. (2008). Econometric analysis of panel data, 

John Wiley & Sons. 

 

Baltagi B.H. (2005). The Econometrics of Panel Data. 

John Wiley & Sons, New York. 

 

Balestra P. and Nerlove M. (1966) Pooling cross-section 

and time series data in the estimation of a dynamic model: 

the demand for natural gas. Econometrica 34: 585-612 

 

Choulakian, V., Lockhart, R. A., and Stephens, M. A. 

(1994). Cramér‐von Mises statistics for discrete 

distributions. Canadian Journal of Statistics, 22(1), 125-

137. 

 

Greene, W. (2008) Econometric Analysis; New York: 

Pearson 

 

Grunfeld Y. (1958) The Determinants of Corporate 

Investment. Unpublished Ph.D. dissertation, Department 

of Economics, University of Chicago 

 

Habshah Midi, Muhammad Sani Shelan Saied Ismaeel 

(2021) Fast Improvised Influential Distance for the 

Identification of Influential Observations in Multiple 

Linear Regression. Sains Malaysiana, 50 (7) (2021): 

2085-2094 http://doi.org/10.17576/jsm-2021-5007-22 

 

Hausman J.A. (1978) Specification tests in econometrics, 

Econometrica 46, 1251–1271 

 

Hsiao C. (2003) Analysis of Panel Data, 2nd edition. 

Cambridge University Press. 

 

Lima, V.M.C., Souza, T,C., Cribari-Neto, F. and 

Fernandes, G.B. (2009). Heteroskedasticity- robust 

inference in linear regressions. Communications in 

Statistics-Simulation and Computation 39: 194-206 

 

Maronna, R. A., et al. (2006). "Wiley Series in Probability 

and Statistics." Robust Statistics: Theory and Methods: 

404-414 

 

Muhammad Sani, Habshah Midi & Jayanthi Arasan 

(2019) Robust Parameter Estimation for Fixed Effect 

Panel Data Model in the Presence of Heteroscedasticity 

and High Leverage Points, ASM Science. Journal 12, 

Special Issue 1, 2019 for IQRAC2018, 227-238 

 

Muhammad Sani, Shamsuddeen Suleiman & Baoku 

Ismail G (2020) Robust Parameter Estimation for 

Random Effect Panel Data Model In The Presence Of 

Heteroscedasticity And Influential Observations, 

FUDMA journal of sciences, 4(4): 561- 569, ISSN; 2645 

– 2944 

 

Muhammad S., Habshah M. & Babangida I.B. (2019) 

Robust White’s Test For Heteroscedasticity Detection In 

Linear Regression FUDMA journal of sciences, 3(2): 

173- 178, ISSN; 2645 – 2944 

 

Mundlak Y. (1961) Empirical production function free of 

management bias, Journal of Farm Economics43, 44–56 

 

Rahman, M., Pearson, L. M., and Heien, H. C. (2006). A 

modified anderson-darling test for uniformity. Bulletin of 

the Malaysian Mathematical Sciences Society, 29(1). 

 

Richard, A. J., and Dean, W. W. (2002). Applied 

multivariate statistical analysis. London: Prenticee Hall, 

265 

 

Wallace, T.D. and Hussain A. (1969).  The use of error 

components models in combining cross-section and time-

series data, Econometrica37, 55–72 

 

Wooldridge, J.M., (2002) Econometric Analysis of Cross 

Section and Panel Data. MIT Press, Cambridge, London.

 

http://doi.org/10.17576/jsm-2021-5007-22

