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ABSTRACT 

Bacteria classification plays a vital role in the medical field, facilitating the 

diagnosis and treatment of various diseases. Traditionally, clinical specialists 

have relied on conventional techniques for classification, which lack predictive 

capabilities. Manual classification of bacteria is a laborious and time-consuming 

task that demands significant human effort. However, advancements in 

technology have opened possibilities for microorganism classification through the 

utilization of novel machine learning algorithms. This research explores the 

integration of Convolutional Neural Networks (CNNs) for the classification of 

bacterial samples, aiming to revolutionize the traditional manual classification 

methods in the medical field. The methodology involves three stages: image 

acquisition, feature extraction, and classification. Employing the Enhanced CNN 

model, the study demonstrates the effectiveness of deep learning techniques in 

image classification on a diverse bacterial species. Experimental results reveal 

superior accuracy compared to existing baseline methods, showcasing the 

potential of deep learning for efficient and precise bacteria classification. The 

proposed approach has the potential to alleviates the manual classification burden, 

saving time, and reducing dependence on human expertise. This research 

contributes to advancing healthcare practices by enhancing the accuracy and 

precision of 95% and 93.2% respectively for bacterial classification. 

 

INTRODUCTION 

Bacterial classification stands as a pivotal element in the 

medical domain, crucial for precise diagnoses and 

effective disease treatments. Traditionally, clinical 

specialists have navigated through conventional 

techniques that, regrettably, lack predictive capabilities 

(Mohammed & Benlamri, 2014). The manual 

classification of bacteria, a labor-intensive endeavor, 

demands substantial human effort, as noted in (Butploy et 

al., 2021). Recent technological strides, however, have 

ushered in a new era for microorganism classification, 

harnessing the potential in Machine learning (ML) 

algorithms (Panicker et al., 2018). ML, Deep learning 

(DL) and Transfer learning (TL) are subsets of larger 

domain of Artificial Intelligence (AI) deployed in all 

aspect of human existence. Among these, Convolutional 

Neural Networks (CNNs), have emerged as promising 

contenders for image classification in various fields 

(Holmström et al., 2017; Peixinho et al., 2016). 

This study builds on the foundation aiming to 

revolutionize bacteria classification through the synergy 

of image processing techniques and deep learning 

methodologies. Our proposed approach unfolds across 

three pivotal stages: image acquisition, feature extraction, 

and classification. Initial microscopic imaging captures 

the morphological characteristics of bacterial samples. 

Subsequently, a suite of image processing techniques, 

including noise reduction, contrast enhancement, and 

image segmentation, is applied to elevate the quality of 

the acquired images. 

Deep learning models, notably the ResNet-50 CNN 

model, are employed for feature extraction and 

subsequent classification. Recognized for their success in 

diverse image recognition tasks, CNNs, with their 

capacity to autonomously discern discriminative features, 

prove particularly well-suited for bacteria classification. 

The efficacy of our proposed approach will be rigorously 

examined through experiments conducted on a dataset 

comprising of two bacterial species. Results are 

anticipated to underscore the effectiveness of image 

processing techniques in augmenting image quality, 

subsequently elevating classification performance. The 

ResNet-50 CNN model is poised to demonstrate high 

accuracy, surpassing existing methods and emphasizing 
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the transformative potential of deep learning in bacteria 

classification. 

This research's anticipated benefits are profound, seeking 

to alleviate the labor-intensive manual classification 

burden, save time, and reduce dependence on human 

expertise. By leveraging CNNs and integrating advanced 

image processing techniques, our approach promises to 

enhance the accuracy and efficiency of bacteria 

classification, thereby advancing medical diagnoses and 

treatments. In essence, this study represents a significant 

leap forward, bridging the gap between conventional 

methodologies and cutting-edge technology. The 

expected experimental results will affirm the superiority 

of our proposed technique, establishing it as an asset for 

bacteria classification in the medical field. 

 

Related Work 

In the evolving landscape of medical image analysis, 

machine learning (ML) techniques, particularly Deep 

Learning (DL) algorithms, have demonstrated 

remarkable potential and efficiency in the classification 

of microscopic images for various medical applications. 

This literature review explores the progression in the 

widespread adoption of Convolutional Neural Networks 

(CNNs) in the domain of bacterial species classification.  

The study by Rujichan et al. (2019) investigated the use 

of convolutional neural networks (CNNs) for bacterial 

species classification, emphasizing the robustness and 

effectiveness of their approach in microbial classification. 

Their findings demonstrated high accuracy in predicting 

bacteria species, regardless of image resolution, and 

explored the impact of varying epochs and activation 

functions on model performance. 

Similarly, A novel automated model which quickly 

detects and classifies live bacteria in water by using deep 

neural networks to analyze holographic images was 

proposed by (Wang et al., 2020). (Li et al., 2022) 

proposed a model that incorporates a lens-free imaging 

modality and employs two deep neural networks to 

detect, count, and identify bacterial colonies. The system 

demonstrated high efficacy when tested with various 

coliform bacteria, achieving an average CFU detection 

rate of 97.3% at 9 hours of incubation and an average 

recovery rate of 91.6% at approximately 12 hours. 

In a related work in (Butploy et al., 2021) proposed a deep 

learning approach for classifying A. lumbricoides eggs 

using CNN, achieving high accuracy through the 

optimization of CNN architecture with different 

convolution layers and tuning parameters. Their model 

proved effective in reducing manual image classification 

effort, showcasing potential applications in parasitic egg 

classification. 

The work of (Dacal et al., 2021) presented a system using 

smartphones and deep learning algorithms to detect and 

count soil-transmitted helminth (STH) eggs in digitized 

microscopy images. Their work demonstrated the 

integration of smartphone-assisted microscopy for remote 

analysis, providing a potential solution for improving 

accessibility and quality of STH diagnosis in low-

resource settings. 

Kumar et al. (2023) introduced a YOLOv5-based deep 

learning model for detecting and classifying intestinal 

parasite eggs from microscopic images, outperforming 

other methods, and demonstrating its potential for real-

time diagnosis and treatment of parasitic infections. The 

model incorporated data augmentation techniques to 

enhance dataset diversity. 

In a different context, Suwannaphong et al. (2023) 

employed transfer learning for automatic parasite egg 

detection and classification during fecal examinations. 

Their proposed ResNet50 framework exhibited high 

accuracy in classifying parasitic eggs, even in low-quality 

images from a USB microscope. This approach 

showcased robustness in handling diverse data, 

suggesting its applicability in real fecal examinations 

using USB microscopes. 

AlDahoul et al. (2023) adds another dimension to the 

related work, showcasing a highly accurate technique 

called Convolution and Attention Networks (CoAtNet) 

for automated recognition and classification of 11 types 

of parasite eggs from microscopic images. The study 

demonstrates the superiority of the CoAtNet model over 

other deep learning approaches, including CNNs and 

vision transformers, with an impressive average accuracy 

and F1 score of 93%. The CoAtNet model combines the 

strengths of convolutional networks and vision 

transformers to automatically extract informative 

features, enhancing the differentiation of parasite egg 

categories. The tuning of all layers in CoAtNet allows it 

to learn parameters specific to the parasitic egg image 

classification task. 

Moreover, AlDahoul et al.'s proposed approach has the 

potential to reduce errors, improve sensitivity, and 

integrate seamlessly into parasitological diagnosis 

systems for identifying common protozoan and helminth 

infections, particularly in low-income countries. 

However, the study acknowledges limitations, such as 

increased computational costs for tuning all layers and the 

inability to localize multiple eggs. Nevertheless, the 

overall contribution of this study is significant, presenting 

a highly accurate deep learning solution for automated 

parasitic egg recognition that can greatly assist in 

microscopy-based diagnosis. 

The literature presents recent advancements in deep 

learning applications for microbial and parasitic detection 

and classification. It examined species classification’s 

robustness regardless of image resolution (Chavis et al. 

2019), automated models for live detection and 

identification of bacteria (Wang et al., 2020; Li et al., 

2022), labour cost reduction in A. lubricoides eggs 

claasification (Butploy et al., 2021), solution for 

improved accessibility in low-resource settings (Elena et 
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al., 2021), intestinal parasite eggs detection (Kumar et al., 

2023), transfer learning for automated parasite egg 

detection (Suwannaphong et al., 2023) and CoAtNet , an 

automated recognition and classification of 11 types of 

parasite eggs (AlDahoul et al., 2023). 

However, despite the promised potential of the examined 

literature, existing solutions for automated recognition of 

parasite eggs in microscopic images, such as (Butploy et 

al., 2021 and AlDahoul et al., 2023), still need 

improvements to reduce diagnostic errors and generate 

fast, efficient, and accurate results. In this research, we 

aimed to build an enhanced CNN model that can classify 

two species of intestinal parasite with improve accuracy 

and precision compared to the baseline studies. Overall, 

our approach is expected to contribute to the advancement 

of deep learning solutions for automated microbial and 

parasitic detection, offering promising prospects for 

diagnosis and treatment. 

In summary, the review demonstrated a widespread 

adoption of Convolutional Neural Networks (CNNs) for 

bacterial species classification. The findings collectively 

underscore the potential and advancements in medical 

image analysis, paving the way for more sophisticated 

and accurate diagnostic tools in microbiology. 

 

MATERIALS AND METHODS 

In this section, the dataset and the different stages 

involved in developing the model are outlined and 

examined. The parasite images were collected as an input 

data from General Hospital Funtua in Katsina state 

Nigeria. For both types of the intestinal parasites, Ascaris 

Lumbricoides ova (ALO) and Trichuris trichiura ova 

(TTO), 300 images were obtained for the experiment. Fig. 

1 depicts the different phases of the method adopted in 

developing, training and evaluation of the model. 

 

 
Figure 1: Different stages of model development process 

 

Data Preparation 

Collection and Cleansing 

The dataset preparation involved the collection of parasite 

images sourced from General Hospital Funtua, Katsina, 

Nigeria. The collection process utilized a microscope 

equipped with a digital camera, connected to a PC 

through specialized software. Specifically, 100 images 

were gathered for each of the two types of parasites, 

Ascaris lumbricoides ova (ALO) and Trichuris trichiura 

ova (TTO). Following this data acquisition, the dataset 

underwent a meticulous two-step preparation: firstly, a 

careful assortment of microscopic bacteria images, 

ensuring a representative and diverse selection, and 

secondly, pre-processing procedures such as noise 

reduction and image normalization to enhance the overall 

quality and suitability of the dataset for subsequent 

analysis for machine learning applications. Fig 2a and b 

illustrate sample images. 

 

 

 

 

 

 
Figure 2(a) : Ascaris Lumbricoides Ova (ALO) 

 
Figure 2(b): Trichuris Trichiura Ova (TTO) 
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Image Augmentation 

Image Augmentation played a pivotal role in augmenting 

the dataset by increasing the quantity of image data, 

particularly when the available data were deemed 

insufficient for diverse transformations. Various 

techniques were employed to introduce diversity and 

variability into the dataset, including rotation, zooming 

in/out, and reflection. These augmentation methods 

contribute not only to expanding the dataset but also to 

enhancing the robustness of machine learning models by 

exposing them to a broader range of visual scenarios. The 

dataset is limited, hence the need for augmentation. 

Training a Convolutional Neural Network (CNN) on 

smaller datasets increases the susceptibility to overfitting. 

This impedes CNN’s capacity to effectively generalize to 

unseen and invariant data. 

 

Model development 

The Convolutional Neural Network (CNN) architecture 

deployed in this study is meticulously crafted to 

proficiently process and discern intricate features within 

the dataset. The model's configuration is characterized by 

a sequence of key layers that collectively contribute to its 

robust analytical capabilities. At the forefront of the 

architecture is the Conv2D layer, a pivotal element for 

feature extraction. Employing 32 filters of dimensions 3 

by 3, this layer systematically traverses the input images, 

capturing nuanced patterns and spatial information 

crucial for subsequent classification endeavours. Fig 3 

represents a 2D convolutional layer 

 

 
Figure 3: Convolutional 2D layer 

 

After the convolutional layer, the MaxPooling2D layer is 

strategically introduced to down sample the spatial 

dimensions of the acquired features. This reduction not 

only alleviates computational complexity but also 

accentuates salient features by effectively halving the size 

of the images. The ensuing Flatten layer assumes a central 

role, orchestrating the transformation of processed 

images from a 2D array to a 1D array. This pivotal step 

optimally readies the data for seamless integration into 

the subsequent dense layers of the neural network, 

facilitating a streamlined flow of information. 

The Fully-Connected layer establishes connections 

between the neurons in one layer and all the nodes in the 

subsequent layers, enabling the computation of weights 

and biases derived from the preceding layer. 

Consequently, during the backpropagation process in the 

Fully Connected layer, the model iteratively refines and 

adjusts the weights and biases, facilitating the fine-tuning 

of the neural network. 

 
Figure 4: CNN architecture, integrating convolutional, pooling, flattening, and dense layers 
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To introduce essential non-linearity, the Relu (Rectified 

Linear Unit) activation function is judiciously applied. Its 

role is paramount in ensuring that negative values are 

rectified to zero, endowing the model with the capacity to 

discern intricate relationships inherent in the data. 

Culminating the model architecture is the Softmax layer, 

comprising 6 neurons, each dedicated to representing a 

distinct class. Employing the Softmax activation function, 

this layer computes probabilities for the input image's 

association with predefined classes. This configuration, 

tailored for multi-class classification, underscores its 

suitability for intricate categorization challenges. Fig 3 

depicts the different layers in the architecture. 

In essence, the holistic CNN architecture, integrating 

convolutional, pooling, flattening, and fully connected 

layers, stands as a testament to its efficacy in processing 

and classifying diverse features within the dataset, 

thereby establishing a foundation for precise and 

insightful image classification. Fig 4 depicts the CNN 

architecture. 

 

 

 

RESULTS AND DISCUSSION 

In the experiment, Google collab was used. Dataset was 

divided into 40% for training, 30% for testing and 30% 

for validation. Augmentation was done to increase the 

dataset size. The model architecture is designed in a 

sequential manner for effective image classification. It 

begins with a Conv2D layer using 32 filters of size 3 by 

3, extracting intricate features from input images. A 

subsequent MaxPooling2D layer reduces spatial 

dimensions, retaining vital information while minimizing 

computational complexity. 

The Flatten layer transforms the 2D-array image 

representation into a 1D-array, facilitating integration 

with densely connected layers. Rectified Linear Unit 

(ReLU) activation introduces non-linearity, enhancing 

the model's capacity to learn complex patterns. The final 

layer employs Sigmoid activation with 2 neurons for 

binary classification probabilities. Training occurs in 

batches of 128 samples with Adam as optimizer and 

learning rate at 0.0001 optimizing computational 

efficiency, and spans 20 epochs for comprehensive 

learning and parameter adjustment. Fig 5a show the 

disparity between training accuracy and loss. 

 

 
Figure 5: shows the accuracy learning rate in left hand side and loss training rate on the right hand side 

 

Model Evaluation 

To evaluate the robustness of the experiments conducted 

on the trained Convolutional Neural Network (CNN) 

model, we employ metrics such as Precision, Recall, F1-

score, and mean Average Precision (mAP) for evaluation 

purposes. The computation procedures for these metrics 

are elucidated in equations 1 through 3 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+TP
    (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
TN

FP+TN
   (2) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
Precision∗Recall

Precision+Recall
 3 

In this context, the notations TP, TN, FN, and FP denote 

True Positive (indicating correct detections), True 

Negative, False Positive (reflecting incorrect detections), 

and False Negative (representing missed detections). The 

F1-score metric serves to elucidate the balance between 

Recall and Precision, providing a comprehensive 

assessment of the trained model's performance, as 

articulated in equation (3). 

 

Comparison with Previous work 

To contextualize our findings, we conducted a 

comparative analysis with existing research within the 

domain, specifically examining the outcomes reported by 

Butploy et al. in 2021 and Aldahoul et al. in 2023. The 

comparative results are meticulously presented in Table 

1. Notably, our proposed deep learning model 

demonstrates a remarkable total accuracy of 95%, 

surpassing the baseline accuracy observed in prior 

studies. This noteworthy improvement indicates the 

heightened efficacy of our model in identifying and 

classifying A. lumbricoides and T. trichiura, underscoring 

its enhanced performance in relation to established 

benchmarks. 
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Table 1: Comparison with existing studies 

Authors Methods %Accuracy %Precision  %Recall %F1 Score 

Butploy et al. (2021) CNN 93.3 86.6 92.8 89.6 

Aldahoul et al. (2023) Multi-modal learning 92.0 93.0 93.0 93.0 

Ahmad et al. (2023) Enhanced CNN 95.0 93.2 93.8 93.5 

 

CONCLUSION 

In conclusion, our study substantiates that the cost-

effective digital microscope employed herein exhibits 

commendable imaging capabilities, reliably discerning 

prevalent helminth parasite classifications, specifically A. 

lumbricoides and T. trichiura, within fixated stool 

samples. Additionally, our investigation introduces a 

novel dimension by illustrating the efficacy of a deep 

learning-based image analysis model for automating the 

detection of helminth parasites in such samples. These 

findings contribute to the existing body of knowledge, 

affirming the viability of low-cost digital imaging tools 

for point-of-care diagnosis in rural settings. Nonetheless, 

it is imperative to underscore the necessity for further 

rigorous validations of these techniques prior to their 

integration into clinical environments. 
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