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ABSTRACT 
In this article, we derive various exact solutions and patterns for the complex 

modified Korteweg–De Vries system of equation (cmKdV) with a generalized 

innovative extended direct algebra method. The Korteweg-De Vries system 

exhibits the scientific dynamics of water particles at the surface and beyond the 

surface level. The system also has applications in ferromagnetic materials, 

nonlinear optics, and solitons theory. The innovative direct algebra method is 

applied to obtain dark, multiple, singular, breather and bright wave patterns. 

This method also provides staggering wave solutions for the complex modified 

Kortweg-De Vries system in the form of hyperbolic and trigonometric 

functions. These recovered solutions for the considered model and are more 

efficient, concise and general than the extant ones. The wave patterns are 
properly explained with 2-D and 3-D graphs to elucidate wave behaviour for 

some selected solutions derived for the system. Lastly, the solutions in this 

work will greatly advance various fields of application of the Kortweg-De 

Vries equation like optical fibres, ferromagnetic materials, nonlinear optics, 

signal processing, water waves, plasma physics, soliton theory, string theory 

and other contemporary sciences. 
 

INTRODUCTION 

In recent years, researchers have put considerable efforts 

into nonlinear waves at oceanic surfaces. The phenomena 
of nonlinear waves significantly contribute to tsunami 

waves, ocean engineering, mechanics, Control theory, 

biology, plasma physics, the communications industry, 

coastal engineering, fluid dynamics, physics, chemistry, 

and so forth. In many engineering and science research 

areas, nonlinear wave propagations are vital in the 

multidisciplinary sciences (Sabi’u, Das & Razazadeh, 

2022). In recent days, researchers are investigating unique 

solutions for nonlinear partial differential equations 

(NPDEs) by utilizing distinct techniques. In specific, for 

the solitary wave solutions, many powerful techniques 

have been offered, like the Ricatti equation method 
(Ibrahim, Sabiu & Gambo, 2024), tanh-coth, sine-cosine 

and Kudryashov methods (Shaikova, Kutum & 

Myrzakulov, 2022), the Sadar subequation method 

(Muhammad, Sabi’u, Salahshour, & Rezazadeh, 2024) the 

tanh technique (Jibril & Gadu, 2019), the Hirota approach 

(Akinyemi, Senol & Iyiola, 2021), exp-function technique 

(Khater, Akinyemi, Elagan & El-Shorbagy, 2021), the 

Jacobi elliptic function technique (Houwe & Abbagari,  

 

 

 
 

 

 

 

2021), as (Razazadeh, 2018), stated in Darboux 

transformation approach and so on in providing the 

unified framework. Most of these methods are 
successfully applied to obtain solitary wave solutions 

to the wide range of nonlinear evolution equations, for 

example, the application of the auxiliary equation 

method to Biswas–Arshed equation (Razazadeh, 2018), 

the application of the new direct algebra methods on 

the Triki-Biswas equation (Rahman, Karaca & 

Baleanu, 2024), The application of the generalized 

Riccation equation and direct algebra on the Chavy-

Waddy-Kolokolnikov model for bacterial colonies , the 

application of modified hyperbolic function method to 

the generalized (2+1)-dimensional nonlinear wave 

equation (Shaikova, Kutum & Myrzakulov, 2022), the 
application of exponential function expansion and 

Kudryashov methods (Rahman, Karaca & Baleanu, 

2024), the application of the (G′/G)-expansion method 

to the Mikhailov–Novikov–Wang equation (Ibrahim, 

Sabiu & Gambo, 2024), the application of the extended 

trial equation method to the perturbed Boussinesq 

equation with power law nonlinearity (Shaikova, 

Kutum & Myrzakulov, 2022), the application of the  
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sine-cosine method on the unstable and hyperbolic 

nonlinear Schr¨odinger equations (Akinyemi, Senol & 

Iyiola, 2021), etc. In this research we will investigate 

different wave patterns and solitary wave solutions to the 

complex modified Kortweg-De Vries (cmKdV) system 
(Razazadeh, 2022) using the new extended direct algebra 

method. This method has so much significance as it 

provides a systematic approach to finding exact solutions 

to NPDEs which is crucial for understanding complex 

phenomena, and the method reduces complex NPDEs to 

simpler algebraic equations, making it easier to analyze 

and solve them. The cmKdV system is as follows: 

 
𝐻𝑡 + 𝐻𝑥𝑥𝑦 + (𝐻𝑊)𝑥 + 𝑖𝐻𝑉 = 0,

    𝑉𝑥 + 2𝑖𝜏(𝐻∗𝐻𝑥𝑦 − 𝐻𝑥𝑦
∗ 𝐻) = 0,

                      𝑊𝑥 − 2𝜏(|𝐻|2)𝑦 = 0.

                                 (1) 

 

H(x,y,t) is a complex-valued function, H∗(x,y,t) is the 

conjugate complex function, while V (x,y,t), and W(x,y,t) 
are real-valued functions, x, y are spatial coordinate, t is a 

temporal coordinate, iis complex and τ = ±1. Furthermore, 

some bright, periodic and dark soliton solutions of Eq. (1) 

are acquired for the system Eq. (1) by utilising three 

different approaches: tanh-coth, sine-cosine and the 

Kudryashov methods in (Ibrahim, Sabiu & Gambo, 2024). 

Other techniques applied to solve the cmKdV system Eq. 

(1) are the Sardar sub-equation technique (Yuan, 2021), 

the improved Ricatti approach (Shaikhova, Kutum & 

Myrzakulov, 2022), and the planar dynamical system 

method (Sabi’u, Das & Razazadeh, 2022). This research 
will use the innovative direct algebra approach to present 

unique travelling wave solutions for the Eq. (1). The new 

extended direct algebra technique is efficient for deriving 

exact solutions for the NPDEs. Using the travelling wave 

technique, this approach transforms NPDEs into nonlinear 

ordinary differential equations. The method is 

straightforward and gives numerous exact solutions to the 

NPDEs that can be characterised as periodic, hyperbolic, 

exponential and rational function solutions, see 

(Razazadeh, 2018) for more details about the new 

extended direct algebra method. Additionally, we give a 

brief insight into the lax-pair integrability test for the 
considered model. 

The structure of the paper is composed of the following 

sections: section 1, Lax pair analysis for the cmKdV 

system were presented. In section 2, the main procedure 

associated with the new extended direct algebra method 

was depicted. In section 3, the exact solutions of the 

considered model are displayed. In section 4, the results 

and discussion of the findings are exhibited. section 5, 

completes the paper with some further research directions. 

 

 
 

 

MATERIALS AND METHODS 

 

Lax pair analysis of the modified complex KdV 

model 

This section will give a brief insight into the lax-pair 
integrability test for the considered model. The 

proportional Lax pair analysis of Eq. (1) as described 

in (Shaikhova, Kutum & Myrzakulov, 2022) by letting 

 

                      Φx= BΦ,                Φt= 4λ2Φy + AΦ, (2) 

with  

B = λK+ B0, A = λA1 + A0, (3) 

where: 

 
                                                                                   (4) 

 

 
(5) 

and λ ∈C. 

 

The compatibility condition 

Bt− Ax − BA + AB − 4λ2By = 0,                   (6) 

derived the (2+1)-dimensional combined complex 

modified KdV equations as shown below: 

 

(7) 

 

By setting G = τH∗, the Eq. (7) will be simplified to the 
complex modified KdV equation shown in Eq. (1). 

This shows that the considered model is integrable and 

can be solved via integrable approaches. In this 

research, we employ the innovative extended direct 

algebra approach to acquire the exact solutions for the 

cmKdV equation. 

 

Illustration of the new extended direct algebra 

method 

We will elaborate on the key stages of the new 

extended direct algebra method for determining the 

exact solutions of NPDEs. 

Step I: 
Suppose that the given NPDE for M(x,y,t) is in the 

format of: 
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𝑄𝑁𝑃𝐷𝐸(M,Mx,Mt,MxxMtt,...) = 0                                 (8) 

 
by utilizing this transformation 

M(x,y,t) = M(ζ), ζ = x + y + αt,                                  (9) 

 

we get the resulting ordinary differential equation (ODE) 

QNODE (αM(ζ),M′(ζ),M′′(ζ),...) = 0                               (10) 

 

Step II: 
Let us assume that the exact solution of the Eq. (10) can  

be described as a polynomial function in Q(ζ) as shown 

 below: 

 

 

 

        (11) 

Where bi(0 ≤ i≤ K) are the coefficients of constants to be 

determined subsequently and the function Q(ζ) satisfied 

the NODE in this format: 

 
 Q׳(ζ) = ln(a)(m1 + m2Q(ζ) + m3Q(ζ)2)          (12) 

 

Step III: 
To determine the value of the integer K, we balance the 

highest order derivative with the nonlinear highest term in 

the Eq. (10). Plugging Eq. (12) and Eq. (11) into Eq. (10) 

produces an equation in powers of Q(ζ) in Eq. (10) we 

then gather all the coefficients of powers of Qi(i= 

0,1,2,3,··· ,K) in the deduced equation where these 

coefficients must be set to zero and yield a set of simple 

algebraic equations containing the constants bi. Then it 
can be solved by employing a computer programming 

tool, like Maple, Mathematica, or Matlab. See 

(Razazadeh, 2018) for more details on the extended direct 

algebra method. 

Exact solutions of the (2+1) nonlinear modified 

complex KdV system 

Eq. (1) has to be reduced to NODE by taking the wave 

transformation. 

 

H(x,y,t) = ei(ωx+ϑy+ϱt)M(x,y,t),      (13) 

 

where the parameters ω, ϑ and ϱ are constants and real 
and M(x,y,t) is also a real valued function, Eq. (1) are 

induced to the system of equations as follows: 

 

Mt − 2ωϑMx − ω2My + Mxxy+ Mxw+ Mwx+ i((ϱ − ω2ϑ)M + 

2ωMxy + ωMxx+ ωMW+ MV ) = 0   (14) 

 

Vx − 4τ(ωMMx+ ϑMMy) = 0,  (15) 

 

Wx− 2τ(M2)y= 0.     (16) 

 

Plugging the following transformation 

M(x,y,t) = M(ζ) = M(x + y + αt), 

W(x,y,t) = W(ζ) = W(x + y + αt), V (x,y,t) = V (ζ) = V (x 

+ y + αt), 

into Eq. (14)-Eq. (16) we obtain that 

 
(α − 2ωϑ − ω2)M′ + M′′′ + M′W + MW′ + i((ϱ − ω2ϑ)M + 

(2ω + ϑ)M′′ + ωMW+ MV ) = 0,                               (17) 

 

V ′ − 4τ(ω + ϑ)MM′ = 0,              (18)   

 

W′ − 2τ(M2)′= 0          (19) 

 

where M := M(ζ), W := W(ζ), and V := V (ζ). Now, 

Taking the integral on both sides of Eq. (18)-Eq. (19) 

with respect to ζ and by setting integral constants to 

zero, we obtain: 

 
V = 2τ(ω + ϑ)M2, W = 2τM2.        (20) 

 

By inserting Eq. (20) into Eq. (17), we obtained the 

ODE as follows: 

 

(α − 2ωϑ − ω2)M′ + M′′′ + 2τ(M3)′ + i((ϱ − ω2ϑ)M + (2ω 

+ ϑ)M′′ + 2τ(2ω + ϑ)M3) = 0.                                     (21) 

 

Separating the real part and imaginary part in Eq. (21), 

the following ODEs were obtained: 

 
(α − 2ωϑ − ω2)M′ + M′′′ + 2τ(M3)′ = 0,                       (22) 

 

                           (23) 

 

Taking the integral on both sides of Eq. (22) with 

respect to ζ, we obtained 

 

(α − 2ωϑ − ω2)M+ M′′ + 2τM3 = R                           (24) 

 

where R is the integration constant. The Eq. (23) and 

Eq. (24) are equivalent if: 

 

                  (25) 

 

utilising condition Eq. (25), we get 

 

                                   (26) 

 

We rewrite equation Eq. (23) as 

 

                       (27) 
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We solve equation Eq. (27) using the innovative extended 

direct algebra approach in the next section below. 

 

 

The application of the new extended direct algebra 

method 

We are going to employ the innovative extended direct 

algebra technique to find exact solutions of Eq. (27) in 

this section.By using the homogeneous balance technique 

into Eq. (27), we get K = 1. The exact solution of Eq. (27) 

can be obtained by utilising 

 

                           (28) 

 

This implies that: 

 
M(ζ) = b0 + b1Q(ζ)                            (29) 

 

be the solution of Eq. (27) using the new extended direct 

algebra method steps with b0 and b1 to be determined later. 

It is not difficult to see that if we differentiate Eq. (29) we 

have 

 

                           (30) 

 

Now, substituting Eq. (30) and 

 

        
(31) 

 

into Eq. (27) and setting all the coefficients of powers 
Q(ζ) to zero, we obtain: 

For: 

 (32) 

For: 

  (33) 

For: 

   (34) 

For: 

    (35) 

 
Solving the above system of equations for b0, b1, m1, m2 

and m3, with Maple’s support, we generated the 

obtained results as presented under the results and 

discussion. 

 

RESULTS AND DISCUSSION 

This section gives various wave propagation patterns 

for the solution of the (2+1)-dimensional cmKdV 

system via the new extended direct algebra method. 

For this sake, the wave patterns are properly explained 

with 2-D and 3-D graphs to elucidate wave behaviour 

for some selected solutions derived for the system. See 

the figures below:

 

 
 Fig. 1a   Fig. 1b Fig. 1c 

 
Figure 1: The 2D propagation for |H1(x,y,t)|2 with blue line indicating singular-wave soliton; V1(x,y,t) with red line 

representing singular-wave soliton and W1(x,y,t) with black line showing singular-wave soliton for t = 0, 10 and 

20 seconds. 
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Figure 2: The 2D propagation for |H2(x,y,t)|2 with blue line indicating bright-wave soliton; V2(x,y,t) with red line 

representing dark-wave soliton and W2(x,y,t) with black line showing dark-wave soliton for t = 0, 10 and 20 

seconds. 

 

 

Figure 3: The 3D wave pattern for |h1(x,y,t)|2 showing dark-wave soliton profile and the Re(h1(x,y,t)) indicating 

multiple-wave soliton profile for p = q = a = ω = 0.5, m3 = η = ϑ = 1, ϱ = 1.5, and y = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



 

Wave Propagation Patterns for the (2+1) … Ghazali et al. JOBASR2025 3(2): 53-61 

 

 

58 

 

 

Figure 4: The 3D wave pattern for V1(x,y,t) and the Re(V1(x,y,t)) showing the bright-wave solitons profiles for p = 

q = a = ω = 0.5, m3 = η = ϑ = 1, ϱ = 1.5, and y = 0. 

 

 

Figure 5: The 3D wave pattern for W1(x,y,t) and the Re(W1(x,y,t)) showing bright-wave solitons profiles for p = q = 
a = ω = 0.5, m3 = η = ϑ = 1, ϱ = 1.5, and y = 0. 
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Figure 6: The 3D wave pattern for |H2(x,y,t)|2 and the Re(H2(x,y,t)) showing breather-wave soliton profiles for p = 
q = a = ω = 0.5, m3 = η = ϑ = 1, ϱ = 1.5, and y = 0. 

 

 

 

Figure 7: The 3D wave pattern for V2(x,y,t) and the Re(V2(x,y,t)) showing breather-like solitons profiles for p = q = 

a = ω = 0.5, m3 = η = ϑ = 1, ϱ = 1.5, and y = 0. 
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Figure 8: The 3D wave pattern for W2(x,y,t) and the Re(W2(x,y,t)) showing breather-like solitonsprofiles for p = q 

= a = ω = 0.5, m3 = η = ϑ = 1, ϱ = 1.5, and y = 0. 

 
It is noticed from Figure 1-Figure 8 that both the solitons 

maintained their amplitudes, widths, and directions 

constant throughout the propagation time on x − y 

coordinate. It is also noticed that, these parameters ϱ, η, 

m3, p, q, a, ω, and ϑ, are regulating the wave propagation 

for these solutions. The cmKdV was investigated in the 

literature by utilizing other techniques, see (Ibrahim, 

Sabiu & Gambo, 2024; Shaikhova, Kutum & 

Myrzakulov, 2022; Muhammad, Sabi’u, Salahshour, & 

Rezazadeh, 2024). Moreover, the designed approach in 

this article has made a major contribution in obtaining 
numerous families of exact solutions of Eq. (1) which 

appear recent and recuperate the famous exact solutions 

obtained in (Ibrahim, Sabiu & Gambo, 2024; Shaikhova, 

Kutum & Myrzakulov, 2022; Muhammad, Sabi’u, 

Salahshour, & Rezazadeh, 2024) using the Ricatti, the 

tanh-coth, Kudryashov, sine-cosine and Sadar methods. 

Finally, all the obtained solutions reported in this research 

have been checked and authenticated with Maple 19 by 

substituting them into the original system, that is system 

Eq. (1). Thus, one advantage of the execution of the new 

extended direct algebra approach is that the present 

method is exceptionally reliable and gives unique 
solutions in comparison to other approaches, as well as 

the capacity to elaborate more abundant families of exact 

solutions comprising periodic, singular, dark, breather and 

bright solitons with varying parameters value used in the 

model. The techniques cited in (Ibrahim, Sabiu & Gambo, 

2024; Shaikhova, Kutum & Myrzakulov, 2022; 

Muhammad, Sabi’u, Salahshour, & Rezazadeh, 2024) 

give bright, periodic, singular and bright soliton solutions, 

also the new extended direct algebra method gives 

singular, periodic, bright and dark soliton patterns. 

Furthermore, in this research, we have achieved 20 

unique solutions for the cmKdV model. Whereas the 

techniques utilised in (Ibrahim, Sabiu & Gambo, 2024)  

yield only 12 solutions and (Shaikhova, Kutum & 

Myrzakulov, 2022) provide only 8 exact solutions for 

the whole three techniques utilised in the paper, this 

shows that the innovative extended direct algebra 

method is a reliable, sophisticated, accurate and 

effective method. 

 

CONCLUSION 

In this paper, we thoroughly studied the cmKdV model 

that has applications in water wave and plasma physics 

using the innovative direct algebra method. We 

obtained various exact solutions for the cmKdV model 

that give rise to different wave patterns like dark, 

multiple, singular, breather and bright wave patterns. 

The nature of these solutions is in the form of rational, 

finite exponential, hyperbolic and trigonometric 
functions. The study exhibits the intricate dynamics of 

propagating waves for parameter variations, implying 

various travelling wave behaviour. We applied 

different parameter values and provided unique 

graphical interpretations of some of the exact solutions, 

yielding a precious understanding of the governing 

model’s evolution which has numerous applications in 

water waves, plasma physics, nonlinear optics and 

other contemporary sciences. Antecedent to this 

investigation, previous studies have not yielded 

solutions of this nature. The findings provide valuable 
insights into the complexities of nonlinear wave 

phenomena and reaffirm that the extended direct 

algebra method is a reliable and adaptable method for 
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addressing complex NPDEs-related nonlinear problems. 

In the future, we will incorporate the concepts of 

modulation instability and Lie symmetry analysis for the 

considered model to explore more exciting features of this 

system. 
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