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ABSTRACT 

In this study, the Atangana-Baleanu-Caputo (ABC) fractional derivative with the 

Mittag-Leffler kernel is applied to analyze the transmission dynamics of an 

HIV/AIDS model. The Picard-Lindelöf method is applied to establish the 

existence and uniqueness of the model’s solution. The findings showed that early 

detection, timely treatment, awareness campaigns, and stigma reduction play a 

crucial role in curbing the spread of HIV/AIDS within the population. 

Furthermore, the MATLAB fmincon algorithm is employed to simulate the 

model, providing realistic insights into the disease progression under different 

scenario. The simulation results show that effective treatment of infected 

individuals, along with reduced contact rate through safe sex practices, can 

significantly decrease HIV/AIDS transmission. The incorporation of fractional 

calculus enhances the model’s accuracy, as non-integer order derivatives better 

capture memory effects compared to traditional models. 

 
 

INTRODUCTION 

The Human Immunodeficiency Virus (HIV) is a type of 

retrovirus that compromises the immune system by 

specifically attacking CD4+ T lymphocytes, ultimately 

resulting in a gradual decline in immune function 

(UNAIDS, 2024). Without appropriate treatment, HIV 

progressively impairs the body’s capacity to resist 

infections and diseases, culminating in Acquired Immuno 

deficiency Syndrome (AIDS)—the most advanced phase 

of HIV infection (World Health Organization [WHO], 

2024). During this phase, individuals face a heightened risk 

of opportunistic infections, including tuberculosis (TB) 

and various cancers, which significantly increase the risk 

of death (Centers for Disease Control and Prevention 

[CDC], 2024). The development and widespread use of 

antiretroviral therapy (ART) have led to substantial 

reductions in HIV-related mortality and extended the life 

expectancy of people living with the virus (National 

Institutes of Health [NIH], 2024). Nevertheless, despite 

medical progress, HIV/AIDS continues to pose a 

significant global health burden, affecting millions across 

the world. Sub-Saharan Africa remains the epicenter of the 

epidemic, with the region accounting for approximately 

two-thirds of global HIV cases (WHO, 2024).  

 

 

In Nigeria, an estimated 1.4% of adults aged 15–49 are infected, 

and about 1.9 million individuals are currently living with HIV 

(National Agency for the Control of AIDS [NACA], 2024). 

Alarming figures from 2023 show that approximately 26,000 

children between ages 0–14 contracted HIV, and 15,000 children 

in that same age bracket died due to AIDS-related complications 

(Vanguard News, 2024). These statistics underscore the critical 

importance of maintaining robust prevention, early detection, and 

treatment efforts to curb the epidemic. 

Mathematical modeling has become instrumental in 

understanding how HIV spreads and in evaluating the 

effectiveness of various control measures. These models offer 

valuable perspectives on how elements such as sexual practices, 

access to treatment, and public health initiatives influence 

transmission dynamics (“Agbata et al., 2024”; Huang et al., 2023). 

For instance, Hamou et al. (2024) employed fractional calculus in 

modeling to incorporate memory-dependent dynamics, enhancing 

the precision of epidemic forecasts. Similarly, Meetei et al. (2024) 

used actual epidemiological data to support a compartmental 

modeling framework, emphasizing the importance of data-

informed models for public health decision-making.  
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Their work also explored HIV transmission among men 

who have sex with men (MSM), revealing how 

interpersonal relationships affect infection rates. These 

modeling approaches not only deepen scientific 

comprehension of HIV spread but also guide policymakers 

in developing effective prevention and treatment programs. 

Prevention strategies remain a cornerstone in combating 

the HIV/AIDS epidemic. Biomedical innovations such as 

pre-exposure prophylaxis (PrEP) and long-acting 

injectable antiretrovirals have significantly mitigated 

transmission risks (WHO, 2024). Tools like the dapivirine 

vaginal ring and injectable cabotegravir have provided 

high-risk populations—especially adolescent girls and 

women in sub-Saharan Africa—with new prevention 

options (UNAIDS, 2024). Furthermore, mathematical 

models have been employed to assess the potential benefits 

of scaling up these preventive interventions. For example, 

a study featured in the Journal of Inequalities and 

Applications utilized fractal-fractional derivatives in 

modeling HIV transmission, illustrating how various 

strategies can substantially reduce new infections. 

Alongside these biomedical advances, behavioral 

approaches—such as consistent condom usage, voluntary 

medical male circumcision, and harm reduction efforts for 

people who inject drugs—remain vital in limiting the 

virus's spread (CDC, 2024). 

Despite these achievements, significant obstacles continue 

to hamper global progress in addressing HIV/AIDS. Social 

stigma, discrimination, and economic hardships remain 

key barriers to accessing prevention, testing, and treatment 

services, particularly in low- and middle-income countries 

(UNAIDS, 2024). In response, Nigeria has intensified its 

campaign to eliminate mother-to-child HIV transmission 

and expand pediatric treatment programs (NACA, 2024). 

The government has also created national and regional task 

forces aimed at accelerating PMTCT (Prevention of 

Mother-to-Child Transmission) services and ensuring that 

no child is born with HIV (Vanguard News, 2024). These 

initiatives are aligned with the broader international 

objective of eradicating AIDS as a public health threat by 

the year 2030 (UNAIDS, 2024). 

Table 1. Description of Variables and Model 

parameters. 

 

Variables Interpretation 

S  Susceptible humans  

E  Exposed humans  

I  Diagnosed HIV infected class  

A  Diagnosed HIV/AIDS infected class  

T HIV/AIDS infected patients under 

treatment  

Parameter  Description  

Λ  Recruitment Rate  


 

Contact rate between uninfected 

population and the infected 

individuals  


 Natural death rate  

  Disease induced death rate  

  Progression rate from E to I 

  Modification parameter rate accounts 

for reduced rate of infection 

1  Progression rate from I to A  

2  Progression  rate from T to I 

1  Treatment rate of AIDS infected 

humans  

2  Progression  rate from T back to A 

due  

The Atangana–Baleanu–Caputo (ABC) fractional derivative is a 

contemporary advancement in mathematical analysis that extends 

beyond traditional calculus by incorporating memory and 

hereditary characteristics into differential equations. Unlike 

conventional derivatives, it utilizes a non-local and non-singular 

Mittag-Leffler kernel, enabling the modeling of systems in which 

historical states influence present and future behavior (Atangana 

and Baleanu, 2016). This makes the ABC derivative particularly 

well-suited for complex systems such as those encountered in 

epidemiology, where temporal factors play a critical role in 

understanding disease dynamics. When applied to HIV/AIDS 

modeling, the ABC fractional derivative presents notable benefits 

by accounting for the time-dependent and nonlinear interactions 

associated with the transmission and treatment of the virus. Ullah 

et al. (2019) employed this derivative in constructing a model for 

HIV-1 infection, showing that it yields a more precise depiction 

of disease progression compared to classical approaches. By 

integrating memory effects, the model provides deeper insights 

into how historical infection patterns and treatment responses 

shape the current and future trajectory of the disease, which is 

essential for formulating targeted interventions. 

In addition, the ABC derivative has been effectively used in the 

study of co-infections, including simultaneous infections with 

HIV and COVID-19. For example, Owolabi et al. (2022) created 

a fractional-order model based on the ABC derivative to explore 

the interaction between various COVID-19 variants and HIV. 
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Their research demonstrated the method’s effectiveness in 

capturing the intricate dynamics of co-infection, offering 

valuable guidance for public health policy and epidemic 

control (Atangana and Baleanu, 2019). Overall, these 

applications highlight the ABC fractional derivative's 

potential to enhance the accuracy and applicability of 

epidemiological models, thereby supporting more 

informed and effective disease control measures. 

Preliminaries  

 

Definition 2.1.  On the interval  [0, 1], by taking the 

function 
1( , ), ,f H a b b a  so that ABC  derivative is 

given by 

( )'( )
( ) ( ) ,

1 1

ABC

a
a

M
D f f E d






 

 
   

 

 −
= − 

− −  
  

with (0) (1) 1M M= = , where ( )M   is a 

normalization function  (Atangana & Baleanu, 2016). 

 

Definition 2.2. (Atangana and Baleanu, 2016) On the 

interval  [0, 1],by taking the function   

1( , ), ,f H a b b a   which is not differentiable, hence 

the Atangana-Baleanu fractional derivative in Riemann-

Liouville  sense is defined as  

( )( )
( ) ( ) ,

1 1

ABR

a
a

M d
D f f E d

d






 

 
   

  

 −
= − 

− −  
  

 

Definition 2.3. The ABC  fractional derivative for the 

fractional integral of order   is given by 

( )
11

( ) ( ) (y) ,
( ) ( ) ( )

AB

a
a

I f f t f y dy
 



 
 

  

−−
= + −

    

If  0 =  and  1 = ,  the initial function and ordinary 

integral are obtained, below. 

In the next sections, we will investigate the Laplace 

transform operators and applied fundamental theorems 

associated with these derivatives  (Atangana & Baleanu, 

2016). The connection between these operators and the 

Laplace Transform will be established. 

  
 

0

( ) ( )( )
( ) ( )

1

1

ABR
l f lL

D f l

l















=
−

+
−

L
L  

and  

  
  1

0

( ) ( ) (0)M( )
( ) ( )

1

1

ABC
l f l l f

D f l

l

 













−−
=

−
+

−

L
L  

 

Theorem 2.1. (Atangana and  Baleanu, 2019). Consider the close 

interval [a, b] and use f   to represent a continuous function 

defined on it. We establish the following inequality, which is true 

for any  point lying  in [a, b]: 

 0

M( )
( ) ( ) ,

1

ABRD f f




 




−
 

Where  ( ) max ( ) .a bf f  =  

 

Theorem 2.2. ((Atangana and Baleanu, 2016)). The Riemann-

Liouville and Caputo types of Atangana-Baleanu derivative 

exhibit the lipchitz  condition, which is best defined as given 

below  

   0 0( ) ( ) ( ) ( ) .ABR K ABR KD f D g H f g    −  −  

and  

   0 0( ) ( ) ( ) ( ) .ABC ABCD f D g H f g 

    − = −
 

 

MATERIALS AND METHODS 

Model Formulation 

The human population at time t , denoted by ( )N t  is sub-divided 

into five (5) mutually exclusive compartments of Susceptible 

humans ( )S t , Exposed humans ( )E t , Infected humans with 

HIV ( )I t , Infected humans with HIV/AIDS  ( )A t  and 

Individuals on treatment ( )T t  The total human population is 

denoted as: ( ) ( ) ( ) ( ) ( )( )N t S t E t I t A t T t= + + + + .. The 

recruitment rate of individuals into the susceptible population is at 

the rate  .   is the force of infection which reduces  the 

susceptible  and increases  the exposed human and  
 
denotes 

the effective contact rate. The populations  HIV infected and 

HIV/AIDS infected human increase  by the rates    and 

(1 ) −  respectively.   denotes progression  from HIV 

infected individuals to HIV/AIDS infected individuals and the 

population of every compartment is decreased by the natural death 

rate  . 
1   and  

2  are the treatment rates of  HIV infected 

individuals  and  HIV/AIDS infected individuals  respectively, 
2   

and  
1    are their various re-infection rates. The HIV/AIDS 

infected population is further reduced by the disease induced 

death rate  
.
 

Model Assumptions  

The following mathematical assumptions are used to formulate 

the model  

1. There is re-infection of treated  humans from both 

( ) ( )I t and A t . 

42 



 

Analysis of Existence and Uniqueness … Ezugorie et al. JOBASR2025 3(4): 40-51 

 

   

2. Disease induced death occurs only in the 

HIV/AIDS compartment  

3. The population mixture  is homogeneous  

4. The transmission of the disease in HIV infected 

individuals to HIV/AIDS infected individuals is 

relatively minimal  due to effective treatment  

 

Model Equations 

From the schematic diagram and  model description above, 

the differential equations modeling the transmission 

dynamics of HIV/AIDS  in the population is given as 

( )

( )

( )

2 1

2 1

1 1 2 2

(1)

( )

( )

(1 )

dS
S

dt

dE
S E

dt

dI
E I

dt

dA
E I T A

dt

dT
I A T

d

T

t

 

  

    

      

    

=  − +

= − +

= + − + +

= − + + − + +

= + − + +

 
The force of infection of the  HIV/AIDS model in (1) is 

given as: 

( )I A

N




+
=  

Given  that derivatives  of fractional order represent 

epidemiological patterns better than classical order cases. 

We therefore modify the TB-model (1)  in terms of the 

ABC derivative given as follows  

0 S( ) ( )ABC SD

  − +=  

0 ( ) ( )ABC E S ED

    − +=  

( )20 1( )ABCD E II T

      + − += +
                (2) 

( )0 2 1(1 )( )ABC AA E ID T

       = − + + − + +
            

( )1 1 20 2( )ABC ID A TT     + − + +=
   

 

Subject to initial conditions 

0S(0) S= , 0(0)E E= , 0(0)I I= , 0(0)A A= , 

0(0)T T= ,  

Existence and uniqueness of Solutions 

Solving nonlinear equations continues to be a challenging task in 

differential calculus. The fractional-order model we are studying 

exhibits considerable nonlinearity, which makes finding exact 

solutions to such a complex system particularly difficult. 

Therefore, our main focus is on tackling the issues concerning the 

existence and uniqueness of solutions for model (2). To do this, 

we use the fixed point theorem, a widely recognized technique for 

demonstrating the existence of solutions to nonlinear equations 

across different mathematical contexts  (Atangana and Baleanu, 

2016). This approach enables us to better understand the system's 

behavior and characteristics. On the interval q , suppose that 

( ) ( ),p K q K q=  , where the Banach space ( )K q  of 

continuous real value functions is defined with the norm 

, , , ,S E I A T S E I A T= + + + + , 

where, 

 sup ( ) : ,S S q =   

 sup ( ) : ,E E q =   

 sup ( ) : ,I I q =   

 sup ( ) : ,A A q =   

 sup ( ) : ,T T q = 
 

 

 

 
 

Figure 1: Schematic diagram for the HIV-AIDS model  

 

The model (2)  is transformed using  the Atangana-Baleanu 

fractional derivatives, resulting in the following differential 

equations  

 

 

( )  
1

0

1
( ) (0)

( )
(

)
)

)

(
( ( )

S

dyS E

E E E

y









  

 





−

−
−

− = ++


+− −

 

( ) 

( ) ( ) 

2 1

2 1

1

0

1
( ) (0)

( )

( ) ( )

E I

E I

I I T

y T dy









    

  
 

 
−

+ − + +

+ − +

−
− = +


+−

 

     (3) 
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( ) 

( ) ( ) 

2 1

2
0

1

1

1
( ) (0)

( )

( )

(1 )

)
( )

(1

E I T A

E

A A

y dT yI A









      

  


 


 
−

− + + − + +

−

−

+ + − +

− +

−


+

=



 

( ) 

( ) ( ) 

1 1 2 2

1 1 2 2

1

0

1
( ) (0)

( )

( ) ( )

I A T

I A T

T T

y dy









    

   
 


−

+ − + +

+

−
− = +

−


− + +

 

Simplifying (3), we have  

( ) ( )1 , SK S   − +=  

( )2 ( ), SE EK    = − +  

( ) ( )2 13 , I T IK E     + − += +  

( ) ( )14 2( ), 1 E I TK A A      = − + + − + +  

( ) ( )1 15 2 2, I AK TT     = + − + +  

Theorem 4.1. If the aforementioned inequality holds: 

 

 

0 1, for 1,2,3, ..., 5i i  =
 
 

Then the kernels 𝜅1, 𝜅2, 𝜅3, 𝜅4, 𝜅5 satisfy the Lipschitz 

condition.   

Proof. By taking the kernel 

( ) ( )1 , S S  − += . Let S  and 1S be any two 

functions, so that : 

 

( ) ( ) ( )11 1 1 1, ( ) , ( ) S S S SS S       − =  −− − + +  

                                             

( ) 1( ) ( )S S    − + −  

                                                          

1( ) ( )
I A

S S
N N

 
  

 
− + + −





 

                                                           

1( )
( ) ( )

( )
I A

S S
N N

 
  

 
 − 
 

+ +  

                                                            

( )3 4 1( ) ( )P P S S   + −+  

                                                              

1 1( ) ( )S S   −  

( )41 3P P  + += ,where 1 max ( )JP S = ,

2 max ( )JP E = , 3 max ( )JP I = ,  

4 max ( )JP A = ,  5 max ( )JP R = ,  
Are bounded 

functions, we have 
 

( ) ( )11 1, ( ) , ( )S S    − =  1 1( ) ( )S S   −  

Thus 
1 satisfies the Lipschitz  condition, and if 

10 1, 

then it is also a contraction for 
1 . In the same manner, the 

Lipschitz  condition is satisfied by other kernels: 

           

( ) ( )2 2 1 2 1, ( ) , ( ) ( ) ( )E E E E      − = − , 

( ) ( )3 3 1 3 1, ( ) , ( ) ( ) ( )I I I I      − =  − , 

( ) ( )4 4 1 4 1, ( ) , ( ) ( ) ( )A A A A      − =  − , 

( ) ( )5 5 1 5 1, ( ) , ( ) ( ) ( )R R R R      − =  − , 

By taking the kernel for the model into consideration,  we write 

(3) as follows : 

( ) ( ) ( )
1

1
0

1

1
( ) (0) , y,

( ) ( ) ( )
S S S y S dy

 
 

 




−−
= + + −

   

( ) ( ) ( )
1

2 2
0

1
( ) (0) , y,

( ) ( ) ( )
E E E y E dy

 
 

 




−−
= + + −

   

( ) ( ) ( )
1

3 3
0

1
( ) (0) , y,

( ) ( ) ( )
I I I y I dy

 
  




 

−−
= + + + −

   

( ) ( ) ( )
1

4 4
0

1
( ) (0) , y,

( ) ( ) ( )
A A A y A dy

 
 

 




−−
= + + −

                      

( ) ( ) ( )
1

5 5
0

1
( ) (0) , y,

( ) ( ) ( )
R R R y R dy

 
 

 




−−
= + + −

   

     (4) 

Hence, presenting  the subsection of (4) recursively, we 

obtain: 

 

 

 

 

 

 

 

 

( )  
1

0

1
( ) (0)

(
(

)

( ) (

)

( )
)

S

S

S S

y dy











 





−

− +

 −

− =

−


+

−

+ 

TA
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( ) ( ) ( )1
0

1

1

1 1

1
( ) , y,

( ) ( ) ( )
v v vS S y S dy

 
  

 
 



−

− −

−
= + + −

   

( ) ( ) ( )
1

2 1 2 1
0

1
( ) , y,

( ) ( ) ( )
v v vE E y E dy

 
  

 
 



−

− −

−
= + −

   

( ) ( ) ( )
1

3 1 3 1
0

1
( ) , y,

( ) ( ) ( )
v v vI I y I dy

 
  

 
 



−

− −

−
= + −

   

( ) ( ) ( )
1

4 1 4 1
0

1
( ) , y,

( ) ( ) ( )
v v vA A y A dy

 
  

 
 



−

− −

−
= + −

 
                 

 

Subject to the initial conditions: 

0 ( ) (0)S S = ,
0 ( ) (0)E E = ,

0 ( ) (0)A A = , ( ) (0)I I = , 
0( ) (0)R R =

 
The system (5) is obtained by using the initial 

conditions and the difference between the 

successive terms.  

( ) ( )

( ) ( ) ( )( )

1 1 1 2

1 1 1 2
0

1

1

1
( ) ( ) , ,

( )

, ,
( ) (

Δ

)

( ) v v v vv

v v

S S S S

y S S dy



   




  

 

  

 

− − −

−

− −

=
−

− = −

+ − −
 

 

( ) ( )

( ) ( ) ( )( )

1 2 1 2 2

1

2 1 2 2
0

1
( ) ( ) , ,

( )

, ,
( )

(

( )

) v v v vv

v v

E E E

y

E

E E dy



  



   



 






− − −

−

− −

 =
−

− = −

+ − −
 

 

( ) ( )

( ) ( ) ( )( )

1 3 1 2

1

1 3 2
0

3

3

1
( ) ( ) , ,

( )

, ,
( ) ( )

( ) v v vv v

v v

I I I

y I I dy

I



  




   




  






− − −

−

− −

−
− = −

+ − −


 =



     

                       (5) 

( ) ( )

( ) ( ) ( )( )

1 4 1 2

1

1 4 2
0

4

4

1
( ) ( ) , ,

( )

, ,
( ) ( )

( ) v v vv v

v v

A A A

y A A dy

A



  




   




  






− − −

−

− −

−
− = −

+ − −


 =



 

( ) ( )

( ) ( ) ( )( )

5 1 5 2

1

1 5 25
0

1
( ) ( ) , ,

( )

, ,
( ) ( )

( ) v v v

v v

v vR R R R

y R R dy



   




 

 
 

  



− −

−

− −


−

− = −

+ −


=

−

 

Where: 

1

( ) ( ),
v

v i

i

S  
=

=   

1

( ) ( ),
v

v i

i

E  
=

=  

1

( ) ( ),
v

v i

i

I  
=

=                                            (6) 

1

( ) ( ),
v

v i

i

A  
=

=  

1

( ) ( ),
v

v i

i

R  
=

=  

Applying  the triangular inequality and taking  

norm to (6), we obtain equation (7) 

( ) ( )

( ) ( ) ( )( )

1

1

1 1 2

1

1 1 2
0

1

( ) ( ) ( )

1
, ,

( )

, ,
( ) ( )

v v v

v v

v v

S S

S S

y S S dy


  


 




  

 

 

 

−

− −

−

− −

 = −

−
 −

+ − −
 

     

            (7) 

As the Lipschitz condition  is satisfied by the 

kernel, the following equations hold: 

( )
1

1 1 1 2 1 1 2
0

1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
v v v v v vS S S S y S S dy

 
        

  

−

− − − − −

−
−  − + − −

 

and  

( )
1

1 1 1 1
0

1
( ) ( ) ( )

( ) ( ) ( )
v v vy dy

 
     

  

−

− −

−
   + − 

 
     

                    (8) 

Similarly, we obtained the following results : 

( )
1

2 2
0

1 1

1

( ) (
( ) ( )

) (
)

)
(v v vy dy

 
  

  
  

−

− − =  
−

 + −
   

( )
1

3 3
0

1 1

1

( ) (
( ) ( )

) (
)

)
(v v vy dy

 
  

  
  

−

− − =  
−

 + −
   

( )
1

4 4
0

1 1

1

( ) (
( ) ( )

) (
)

)
(v v vy dy

 
  

  
  

−

− − =  
−

 + −
 

 

( )
1

5 5
0

1 1

1

( ) (
( ) ( )

) (
)

)
(v v vy dy

 
  

  
  

−

− − =  
−

 + −
 

 

Theorem 4.2. A unique solution is exhibited by 

the proposed  HIV/AIDS fractional order   

model with ABC operator (2) if  max

satisfies the following condition
 

max1
1, 1,2, . . .,6.

( ) ( ) ( )
i i for i


 

  

−
+  =


 

Proof. It  is clear that 

( ), ( ), ( ), ( ), , ( )TS E I A T R     are 

bounded and the kernel of these functions also 

satisfies the Lipschitz condition. Hence 

applying the succeeding relation with the 

application of the (8), we obtained  

 

max

1 1

1
( ) (0)

( ) ( ) ( )

v

v S


  
  

 −
  + 

 

, 
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max

2 2

1
(0)

( ) ( )
(

( )
)v

v

E


 
  


 −

 + 



 

, 

max

3 3

1
(0)

( ) ( )
(

( )
)v

v

I


 
  


 −

 + 



 

, 

max

4 4

1
(0)

( ) ( )
(

( )
)v

v

A


 
  


 −

 + 



 

, 

max

5 5

1
(0)

( ) ( )
(

( )
)v

v

R


 
  


 −

 + 



 

, 

Therefore, since (6) is a smooth function and it 

exists. 

1( )( ) (0) ( ) ( )v vS S S  − = −  

2( )( ) (0) ( ) ( )v vE E E  − = −  

3( )( ) (0) ( ) ( )v vI I I  − = −  

4( )( ) (0) ( ) ( )v vA A A  − = −  

5( )( ) (0) ( ) ( )v vR R R  − = −  

Note, the term ( ) 0 →  at infinity. It can 

be shown as follows: 

( ) ( )

( ) ( ) ( )( )

1 1

1

1
0

1

1 1

1
, ,

( )
( )

, ,
( ) ( )

v

v

S S

y S S dy



 





  



 

 


−

 −

−

−
− +

 

− −
 

 

( ) ( )

( ) ( ) ( )

1 1

1

1
0

1

1 1

1
( ) , ,

( )

, ,
( ) ( )

v

v

S S

y S S dy



  




  



 

 


 −

−

−

−
  − +

− −
 

                  

1 1

1

( )
vS S





−

−
 − +  

1 1
( ) ( )

v vS S



 

−−


 

By recursively repeating  the process, we obtain  
1

1 1

1
( )

( ) ( ) ( )

v

vM
 

  
  

+



 −
  + 

 
 

Apply max , we have 

1

max
1 1

1
( )

( ) ( ) ( )

v

vM


  
  

+



 −
  + 

 

 

Taking the limit on both sides as ,v →  we obtain 

( ) 0 →  

  Uniqueness of Solution 

 Demonstrating  the system’s uniqueness  of solution is a 

crucial aspect of the analysis. So via contraction, we 

suppose that there is another system of solution to (2)   

1 1 1 1 1( ), ( ), ( ), ( ), ( )S E I A R      

( ) ( )( )

( ) ( ) ( )( )

1 1 1

1

0

1

1 1 1

1
( ) ( ) , ,

( )

, , (9)
( ) ( )

S S S S

y S S dy





   



 



  
 

−

−
−  − +

− −
 

Now, we  apply  the norm to equation  (9) 

( ) ( )

( ) ( ) ( )

11 1 1

1

1 1
0

1

1
( ) ( ) , ,

( )

, , ,
( ) ( )

S S S S

y S S dy



   





 

 


  


−

−
−  − +

− −
 

 

Applying the kernel’s  Lipschitz conditional properties, 

obtain  

1 1

1
( ) ( )

( )
S S


  



−
 − +  

1

1( ) ( ) ,
( ) ( )

S S
 

 
 

−


 

Which yields  

1

1 1

1
( ) ( ) 1 0,

( ) ( ) ( )
S S

 
  

  

 −
− − +  

 

 

1 1( ) ( ) 0 ( ) ( )HS S S S   − = → = . 

Therefore, the system has a unique solution. Similarly, 

the above result can be obtained for various solutions of 

( ), ( ), ( ), ( ).E I A R     

 

RESULTS AND DISCUSSION 

Sensitivity analysis of the TB model 

Sensitivity analysis is a crucial technique for identifying 

the parameters that impact the spread and management 

of a disease in a population. By methodically altering 

these parameters in a mathematical or computational 

model, researchers can pinpoint the factors that promote 

disease transmission and those that help reduce its 

spread. The sensitivity index of 0R  with respect to a 

parameter p is given by : 

 0 0

0

R

p

T

Rp

R p


 = 


 

 

Given that  

( ) ( )( ) ( )( )
( ) ( )( )

1 1 2 1 2 2 3 4 2 1 1 2 4 2

0

2 1 3 1 2 3 4 1 2 1

1P P P P P
R

P P P P P

            

     

− + + − − + + + − − + −
=

+ + − +  
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1. Parameter  :     0

0

1
R

R






 =


 

 2. Parameter :  0

0

1
R

R






 =


 

 4. Parameter
1 :  

0 1 1

1 0 1 2 2 2 1( )( ) ( )

R

R

 

           


 = −

 + + + + + + +
 

 5. Parameter
2 : 

0 2 2 1 1 1 2

2 0 1 2 2 2 1

(( )( ) )

( )( ) ( )

R

R

         

           

 + + + + −
 = −

 + + + + + + +
 

 6. Parameter
1 : 

0 1 1 1 1 2 2 1

1 0 1 2 2 2 1

( ) ( )

( )( ) ( )

R

R

            

           

 + + − − + +
 =

 + + + + + + +
 

 7. Parameter 2 : 

0 2 2 1 1 2 2 1

2 0 1 2 2 2 1

( )( ) ( )

( )( ) ( )

R

R

            

           

 + + + + + + +
 =

 + + + + + + +
 

 8. Parameter : 

0 2 1

0 1 2 2 2 1

( )

( )( ) ( )

R

R

   

           

 + +
 = −

 + + + + + + +
 

 9. Parameter : 

0 2 2 2

0 1 2 2 2 1

( )

( )( ) ( )

R

R

     

           

 + +
 = −

 + + + + + + +
 

 10. Parameter : 

0

0 1 2 2 2 1( )( ) ( )

R

R

 

           


 = −

 + + + + + + +
 

Final Sensitivity Analysis Results: 

1. Sensitivity Index for  : 1 

2. Sensitivity Index for  : 1 

4. Sensitivity Index for 1 : 
51.447 10−−   

5. Sensitivity Index for 2 : 
41.276 10−−   

6. Sensitivity Index for 1 : 
53.422 10−  

7. Sensitivity Index for 2 : 
53.422 10−  

8. Sensitivity Index for  : 
41.012 10−−   

9. Sensitivity Index for  : 
55.748 10−−   

10. Sensitivity Index for  : 
64.228 10−−   

 

 
 

Figure 2: Sensitivity Bar chart 

 Numerical Simulations of the model 

Through numerical simulations conducted using 

MATLAB, we obtained graphical solutions that 

depicted the behavior of the HIV/AIDS model. These 

simulations provided visual representations of how key 

variables, such as the number of infected and susceptible 

individuals, evolved over time under varying 

conditions. By adjusting parameters such as contact  rate 

(  ), treatment effectiveness, and intervention 

strategies, the simulations illustrated potential 

outcomes, including disease outbreaks or stabilization 

(Acheneje et al,  2024; Agbata et al, 2024) . The 

graphical solutions offered insights into real-life 

behavior by demonstrating how the disease might 

spread or be controlled in practice (El-sayed et al,  

2023). They allowed us to observe trends, such as 

fluctuations in infection rates, and to evaluate the 

effectiveness of different public health interventions. By 

comparing these simulations with actual 

epidemiological data, we were able to refine the model 

and enhance predictions, ultimately contributing to 

more effective strategies for managing and controlling 

HIV/AIDS. 

The parameter values used in the numerical simulations 

are presented in the table 2 below.  

Table 2.  Parameter  values used in the model and 

their sources  

Parameter Value Source 

  0.002 (Olumuyiwa et al,  

2021) 
  0.0000548 (Agbata et al, 2023) 

  0.01 (Odeh et al,  2024) 

  0.01 (Agbata et al, 2024) 

  0.0021 Assumed 

  0.001 (Bolarinwa et al,  

2024) 

1  0.2 (Agbata et al,  2024) 
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2  0.2 Assumed 

1  0.002 (Odeh et al, 2024) 

2  0.01 Assumed  
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 Figure 3(a) illustrates  how variations in the fractional-

order derivative influence the number of susceptible 

individuals over time. As the fractional-order parameter 

increases (  ), the susceptible population decreases, 

indicating that treatment strategies are effectively reducing 

the number of people at risk of infection. This suggests that 

fractional order derivatives  enhance the effectiveness of 

intervention measures. Similarly, Figure 3(b) shows that 

the exposed population initially increases before rapidly 

declining as infection rates rise. While the overall 

susceptible population is shrinking due to higher 

transmission rates, some individuals continue to transition 

into the exposed category. The initial rise in the exposed 

population may be attributed to delayed treatment initiation 

or ongoing interactions with infected individuals before 

preventive measures became fully effective. Figure 4(a) 

reveals the temporal changes in the infected population, 

where the number of infected individuals initially rises as 

people move from the exposed category to the infected 

class. However, after reaching a peak, this population 

begins to decline as more individuals progress to the 

AIDS stage. This peak signifies a turning point where 

transmission rates slow due to either effective treatment 

strategies or behavioral changes within the population. 

Figure 4(b) confirms that the number of individuals 

diagnosed with AIDS continues to decrease over time, 

not due to recovery, but rather as a result of mortality. 

This decline may also reflect the impact of early 

intervention and improved HIV management, which can 

delay disease progression. Meanwhile, Figure 5(a) 

highlights an increasing trend in the number of 

individuals receiving treatment, as infected individuals 

transition into the treatment group. This underscores the 

effectiveness of medical interventions and improved 

healthcare accessibility. Finally, Figure 5(b) reveals a 

steady rise in the cumulative number of HIV/AIDS 

cases over time, driven by  fluctuations in infection. This 

trend emphasizes the ongoing transmission of the virus 

despite treatment efforts, reinforcing the need for 

sustained interventions to curb new infections and 

improve long-term disease management.  

CONCLUSION 

This study utilizes the Atangana–Baleanu–Caputo 

(ABC) fractional derivative, which incorporates the 

Mittag-Leffler kernel, to investigate the transmission 

dynamics within an HIV/AIDS framework. The results 

underscore the critical role of timely diagnosis, access 

to effective treatment, public education initiatives, and 

reducing stigma in controlling the spread of HIV/AIDS. 

Numerical simulations indicate that as the fractional-

order parameter increases, the number of susceptible 

individuals decreases, thereby highlighting the positive 

impact of preventive and therapeutic interventions. The 

model also captures a transient rise in the exposed group 

before a decline, representing the shift from being at risk 

to becoming infected. Similarly, the infected population 

shows an initial increase followed by a peak and 

eventual reduction, mirroring the progression from HIV 

infection to the development of AIDS. A consistent drop 

in the number of individuals in the AIDS stage further 

supports the value of early and sustained interventions 

in delaying or preventing disease advancement. Despite 

the effectiveness of existing treatment strategies, the 

model also reveals a persistent growth in the cumulative 

number of HIV/AIDS cases. This trend points to the 

ongoing need for robust and continuous public health 

efforts. While current interventions have made 

significant progress in reducing transmission, long-term 

success will depend on expanding healthcare access, 

promoting comprehensive education, and addressing 

underlying social and economic challenges. The use of 

fractional calculus in this context proves to be a 

powerful approach, offering improved accuracy in 
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modeling infectious diseases by incorporating memory-

dependent effects. Moving forward, future studies should 

integrate additional real-world factors such as 

demographic shifts, levels of treatment compliance, 

behavioral patterns, and socio-economic variables to 

further refine the model's predictive strength. 
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