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ABSTRACT 
Feature selection is crucial in machine learning, particularly for high-

dimensional data. This study presents two advanced multi-objective 

techniques—Improved Wrapper QEISS (IW-QEISS) and Improved Filter 

QEISS (IF-QEISS)—designed to identify multiple quasi-equally informative 

feature subsets. Unlike traditional methods, which focus solely on accuracy and 

subset size, our approach enhances robustness and interpretability. Using a 

four-objective NSGA-II framework with a population of 100 and 100 
generations, we optimize for accuracy, redundancy, and feature importance 

(threshold = 0.05). Experiments show IW-QEISS identified seven subsets with 

a cardinality of four on the Heart dataset, achieving 0.836 accuracy—on par 

with W-MOSS. IF-QEISS offered similar accuracy with reduced computation. 

These results validate the efficiency and effectiveness of our proposed 

methods. 
 

INTRODUCTION 

Feature selection is crucial in building efficient and 

precise machine learning models, especially with large, 

multidimensional datasets. The challenge lies in 
optimizing multiple objectives like model performance, 

feature count, and feature relevance versus redundancy. A 

potential strategy that has gained traction is multi-

objective feature selection. To address these trade-offs, 

offering a better understanding of feature subset 

interactions has become necessary (Dowlatshahi and 

Hashemi 2024). Traditional methods like Elastic Net 

Regularization, Random Forest, and Gradient Boosting 

Machines often focus on maximizing classification 

accuracy while minimizing feature count, overlooking the 

potential for multiple feature subsets with similar 
information richness (Agrawal et al., 2023). Entropy, a 

measure of the unpredictability or information content of 

a variable, is central to comparing the information 

richness of feature subsets. If two variables, X and Y, 

have similar entropy values, they carry approximately 

equal information. This concept is valuable in domains 

like machine learning and data compression when 

assessing the informativeness of different features 

(Chandrashekar and Sahin 2014). This paper introduces 

the Improved Wrapper for Quasi Equally Informative 

Subset Selection (IW-QEISS), a novel multi-objective 

wrapper feature selection method. IW-QEISS expands the 
search space to include quasi-equally informative subsets, 

evolving a diverse Pareto front that optimizes multiple  

 

 

 

 

 

 

objectives, including relevance and redundancy 

measures. 

Generally speaking, there are three types of feature 

selection techniques: wrappers, filters, and embedding 
approaches. Wrappers interact directly with the model, 

identifying optimal subsets but at a higher 

computational cost. Filters use statistical measures, 

which are computationally efficient but may not align 

with the model's needs. By including feature selection 

into model training, embedded approaches provide 

customized feature selection at the price of 

generalizability. (Muñoz-Romero et al., 2020). 

Conventional feature selection focused on individual 

objectives like accuracy or subset size (Omolara et al. 

2021), but multi-objective approaches now estimate the 
Pareto front to evaluate trade-offs between objectives 

(Gunantara 2018). 

Hybrid approaches combining population-based multi-

objective optimization with wrapper-based evaluation 

are gaining traction. While evolutionary algorithms 

efficiently explore complex search spaces, wrappers 

provide precise model estimates (Sharma and Kumar 

2022). However, existing methods have limitations: 

they often overlook intermediate solutions with larger 

subsets that maintain accuracy and fail to identify 

multiple quasi-equally informative subsets for a given 

cardinality. These gaps highlight the need for improved 
methods that consider these factors to enhance our 

understanding of feature relevance, dependencies, and  
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redundancy (Cervantes et al., 2022; Sharma and Kumar 

2022). 

Advancing feature selection methods is essential for the 

continued progress of machine learning. Methods like 

IW-QEISS that explore multiple quasi-equally 
informative feature subsets offer a promising direction for 

more transparent and effective model development (Wang 

et al., 2022; Mukhopadhyay et al., 2019). 

Dependence between variables is often measured using 

information-theoretic criteria like Mutual Information and 

Partial Mutual Information due to their flexibility in 

modeling various situations without assuming a specific 

functional relationship (Taormina 2016; Mielniczuk 

2022). The Shannon entropy, which measures a random 

variable's uncertainty, is the foundation of these standards 

(Saraiva 2023). Correlation-based measures, particularly 

the linear correlation coefficient, are commonly used for 
analyzing redundancy and relevance, although they may 

not effectively capture nonlinear relationships (Han et al., 

2024; Schober et al., 2018). Information-theoretic criteria, 

such as mutual information and symmetric uncertainty, 

which are rooted in entropy concepts, have gained 

popularity in machine learning for their ability to handle 

both linear and nonlinear relationships (Auffarth et al., 

2010; Han et al., 2024). 

Entropy is used in information theory to quantify the 

degree of uncertainty related to a random variable 

(Saraiva 2023). A discrete random variable X's entropy 
H(X) has the following formal definition: 

𝐻(𝑋) = − ∫ 𝑝(𝑥)𝑙𝑜𝑔𝑝(𝑥)𝑑𝑥                                         (1) 

 

 
Figure 1. A classification of predictors 

 

A classification of predictors according to redundancy 

and relevance is shown in Figure 1 (derived from Yu and 

Liu 2004). Strongly relevant and non-redundant weakly 

relevant predictors make up the ideal subset, which is 

shown in red. 

The set of all potential values of X is represented by X, 

with 𝑝(𝑥) = Pr(𝑋 = 𝑥) , 𝑥𝜖𝑋. Similarly, the joint entropy 

𝐻(𝑋, 𝑌), of two continuous random variables X and Y 

is defined as:  

𝐻(𝑋, 𝑌) = − ∬ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦               (2) 

where 𝑝(𝑥, 𝑦) represents the joint probability density 

function of X and Y. When provided with a univariate 

sample of X and a bivariate sample of (X, Y), the 

discrete form of Equations (1) and (2) can be expressed 

as follows: 

𝐻(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥),
𝑥𝜖𝑋

                                    (3) 

and 

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔𝑝(𝑥, 𝑦)

𝑦𝜖𝑌𝑥𝜖𝑋

                 (4) 

where 𝑝(𝑥, 𝑦) = 𝑃𝑟(𝑋 = 𝑥, 𝑌 = 𝑦), 𝑥𝜖𝑋, and 𝑦𝜖𝑌, 

while the mutual information between X and Y is 

expressed as: 

𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)                          (5) 

Mutual information has been standardized to create 

symmetric uncertainty, which has values between 0 

and 1. According to Gomes and Figueiredo (2024), a 

value of 0 denotes independence between the variables, 

but a value of 1 indicates that knowledge of one 

variable is sufficient to accurately determine the other. 
Formally speaking, symmetric uncertainty is defined 

as: 

𝑆𝑈(𝑋, 𝑌) =
2𝐼(𝑋, 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
                                      (6) 

When dealing with continuous data, it becomes crucial 

to employ appropriate techniques for estimating the 

joint and marginal probability density functions 

𝑝(𝑥, 𝑦), 𝑝(𝑥), and 𝑝(𝑦). 

The characteristics of multiobjective optimization 

issues include the presence of two or more objectives 

that frequently clash (Coello et al., 2019). A 

multiobjective optimization issue can generally be 

stated as follows:  

"𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒" 𝑓(𝑥)
= [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)]          (7) 

The j-th objective function is denoted by 𝑓𝑗, the 

feasible decision space by X, the decision vector by x, 

and the total number of objectives by p. A 

mathematical operation that is not clearly defined is 

vector minimization, as the quote marks in the above 

equation show. Only when no alternative solution 

exists does a given solution X qualify as Pareto-

efficient 𝑥𝜖𝑋 such that 𝑓𝑗(�̂�) < 𝑓𝑗(𝑥) for all j and 

𝑓𝑗(𝑥) < 𝑓𝑗(𝑥) for at least one j. 

Khan et al., 2019 developed a computational model for 

distinguishing cancer lectins with high accuracy, 

sensitivity, and specificity. Wang et al., 2021 

combined ensemble learning with multi-objective 

optimization to develop a fault diagnosis method for 

planetary gearboxes, achieving a classification 
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accuracy of 99.62%. Prina et al. 2018 introduced 

EPLANopt, a model combining EnergyPLAN with a 

genetic algorithm, optimizing energy systems to reduce 

costs and emissions, particularly in South Tyrol by 2050. 

Audet et al., 2021 provided a comprehensive review of 
performance metrics for Pareto front approximations, 

classifying 63 indicators into four categories. MOSHO, a 

multi-objective version of the Spotted Hyena Optimizer, 

was proposed by Dhiman and Kumar (2018). It performed 

better in terms of convergence and diversity than MOPSO 

and NSGA-II. For microarray gene data, Chaudhuri and 

Sahu 2022 created a hybrid feature selection technique, 

which reduced error rates and improved selection speed. 

Schweidtmann et al., 2018 introduced TS-EMO, a 

Bayesian optimization technique for chemical reactions, 

demonstrating the effective trade-offs between objectives 

with minimal experimentation. 
Wang et al., 2023 developed NMDE, a niching multi-

objective differential evolution approach, which found 

diverse and high-quality feature subsets for classification, 

outperforming other methods. In 2020, Blank and Deb 

presented Pymoo, a versatile multi-objective optimization 

framework for testing algorithms and making decisions. 

Emmerich and Deutz 2018 reviewed fundamental 

concepts and algorithms in evolutionary multi-objective 

optimization, including NSGA-II and MOEA/D. 

Many studies have shown that using multi-objective 

optimization in structural engineering and text 
classification, respectively, improves performance over 

traditional methods (Afshari et al., 2019; Labani et al. 

2020). Other notable contributions include methods for 

constrained multi-objective optimization (Li et al., 2019), 

dynamic optimization using manifold transfer learning 

(Jiang et al., 2021), and multi-population approaches (Ma 

et al., 2020), all of which have shown significant 

improvements in computational efficiency and 

optimization performance. 

Despite these advancements, many approaches remain 

limited to two or three objectives. This research aims to 

extend the complexity of multi-objective optimization by 
developing a four-objective wrapper-based and filter-

based feature selection technique, leveraging enhanced 

Extreme Learning Machine (ELM) models to improve 

search space exploration and computational efficiency 

(Taormina et al., 2016; Sun et al., 2020; Kale and 

Sonavane 2019; Khan et al., 2019; Wang et al., 2021). 
 

Research Gap 

Despite progress in multi-objective feature selection, most 
existing methods are limited to optimizing only two or 

three objectives and often fail to identify multiple quasi-

equally informative subsets with similar predictive power. 

Traditional approaches focus narrowly on maximizing 

accuracy and minimizing feature count, overlooking 

feature redundancy and the potential for diverse 

informative subsets. Moreover, many models do not 

adequately explore the trade-offs between relevance, 

redundancy, and interpretability. This leaves a gap in 

discovering alternative feature sets that are equally 

valid yet structurally different. Addressing this requires 

more comprehensive and computationally efficient 
optimization techniques. 

 

MATERIALS AND METHODS 

Here, we define the notion of quasi-equivalency 

between subsets and explain the importance, 

redundancy, and precision metrics that were applied in 
this paper. We explain a computationally less 

demanding filter, provide the improved wrapper for 

recognizing quasi-equally informative subsets, and 

explore implementation details of the learning 

algorithm and global optimization technique.  

Problem Definition 

We assume that 𝑓(. )in this study is a metric that, on a 

scale from 0 to 1, assesses prediction accuracy. A 

model with no predictive ability is represented by a 

value of 0, whereas a model with perfect predictive 
accuracy is represented by a value of 1. We present the 

idea of 𝛿-quasi equivalency between predictor variable 

subsets. When two subsets of predictors, 𝑆𝑗  and 𝑆𝑖, are 

used to create models for a particular model class, and 

if the models produced by the two subsets have 

extremely similar levels of predictive accuracy, 

consequently 𝑆𝑖𝛿-quasi equally informative to 𝑆𝑗 . More 

specifically, if subset if: 𝑓(𝑆𝑖) ≥ (1 − 𝛿)𝑓(𝑆𝑗)𝑓𝑜𝑟 0 ≤

𝛿 ≤ 1 then subset 𝑆𝑖 is d-quasi equally informative to 

subset 𝑆𝑗 . Where 𝛿is a predetermined threshold for the 

permitted variation in predictive accuracy, and 𝑓(𝑆𝑖) 

and 𝑓(𝑆𝑗) represent the predictive accuracy obtained 

using subsets 𝑆𝑖 and 𝑆𝑗 , respectively. The observational 

dataset's unique variable interactions determine 

whether quasi-equivalent subsets exist. Depending on 

their significance in connection to the output variable, 

predictors can be categorized as strongly relevant, 

weakly relevant, or irrelevant, according to research by 

Pudjihartono et al., 2022. 

Objective Function 

Let X be the set of candidate features, S be a subset of 

X, and y be the target classification variable. The 

relevance metric should be optimized throughout the 
search process, represented by f1(S), which is defined 

as follows: 

𝑓1(𝑆) = ∑ 𝑆𝑈(𝑥𝑖 , 𝑦)

𝑥𝑖∈𝑆

                                              (8) 

where 𝑆𝑈(𝑥𝑖 , 𝑦) is the symmetric uncertainty between 

the ith predictor 𝑥𝑖and the output y. The metric of 

redundancy𝑓2(𝑆) to be minimized is: 
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𝑓2(𝑆) = ∑ 𝑆𝑈(𝑥𝑖 , 𝑦)

𝑥𝑖,x𝑗∈𝑆,   𝑖<𝑗

                                          (9) 

The function 𝑆𝑈(𝑥𝑖 , 𝑥𝑗) represents the symmetric 

uncertainty between the predictors 𝑥𝑖 and 𝑥𝑗 . Put another 

way, for a given subset S, 𝑓1(𝑆) evaluates the extent to 
which the predictors in S explain the outcome, whereas 

𝑓2(𝑆) quantifies the degree of likeness. Consequently, the 

search is directed toward choosing predictors that are very 

different from one another by minimizing 𝑓2(𝑆) (Hanke et 

al., 2023). 

𝑓3(𝑆) = |𝑆|                                                                      (10) 

The learning algorithm's performance in classification is 

evaluated using the accuracy measure that follows for the 

fourth objective: 

𝑓4(𝑆) =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
                                  (11) 

Using a pre-defined model architecture, the symmetric 

uncertainty 𝑆𝑈(𝑦, �̂�(𝑆)) measures the information shared 

between the observed output y and the prediction �̂�(𝑆) 

acquired through the subset S. An important benefit of 

using an entropy-based metric for predictive accuracy is 

that it captures the distributional features present in the 
flow duration curve of both the observed and forecasted 

streamflow (Zhang 2024; Zhou et al., 2024). The use of 

information-theoretic measures for hydrologic model 

evaluation is becoming more popular, as shown by works 

like Teegavarapu et al. 2022, Beven 2024, Brauman et al., 

2021, and Gupta et al., 2024. 

Datasets and Parameter Setting 

Heart and Concrete, two distinct datasets from the UCI 

machine learning library, were used to test the algorithms. 

A variety of binary and multiclass classification tasks 

were purposefully represented in these datasets to provide 
a thorough evaluation of the algorithms' performance. The 

selected datasets will show varying degrees of complexity 

in terms of the number of classes; these will cover binary 

classification jobs with two classes to more challenging 

issues with up to ten classes. 

 

RESULTS AND DISCUSSION 

The IW-QEISS (IF-QEISS) algorithm identifies multiple 

feature subsets nearly as informative as the best subset 

using two UCI datasets. It enables superior trade-offs 

between classification metrics and assesses feature 
importance, while also comparing the computational 

power required by each algorithm. Subset sizes are 

capped at 20 or 50 features, depending on the dataset. 

Quasi Equally Informative Subset Comparison 

The number of features in the datasets varies, affecting 

classifier accuracy, which generally improves with more 

features until overfitting occurs. The W-QEISS algorithm 

often identifies multiple nearly equivalent subsets for 

each feature count, as seen in the Heart dataset where it 

found seven informative subsets with a cardinality of 

four (features 3, 9, 12, and 13), as opposed to one 

subset that the W-MOSS algorithm discovered with 

0.836 accuracy: 

𝑆1 =  {2, 3, 12, 13}, 𝑆2 =  {3, 8, 12, 13},
𝑆3 =  {3, 9, 12, 13},
𝑆4 =  {5, 11, 12, 13},
𝑆5 =  {7, 8, 12, 13},
𝑆6 =  {8, 9, 12, 13},
𝑆7 =  {9, 10, 12, 13} 

The IW-QEISS algorithm identified subsets with 

accuracy ranging from 0.807 (S4) to 0.836 (S3), 

matching the W-MOSS solution. It also found larger 

subsets (cardinalities 7, 8, and 9) and achieved better 

classification accuracy for certain datasets due to its 

four-objective optimization approach. This expands the 
search space, enabling the discovery of subsets with 

higher discriminating power. The mRMR algorithm's 

performance varied, sometimes matching W-MOSS 

accuracy, but often lower for other subsets. 

 

 
Fig 2: Binary Classification 1 

 

 
Figure 3: Binary Classification 2 

The W-QEISS (F-QEISS) and W-MOSS plots in 

Figures 1 and 2 illustrate subsets that are nearly equally 

informative at the 0.05 level. 
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Table 1: Comparison of the Four Algorithms 

Data

set 

Algor

ithm 

Sub

sets 

Avg 

Sub

sets 

Best 

Accu

racy 

𝜹 − 𝑸𝒖𝒂𝒔𝒊 𝑬𝒒𝒖𝒂𝒍𝒍𝒚  
𝒊𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒗𝒆 𝒔𝒖𝒃𝒔𝒆𝒕𝒔 

0-

1

% 

1-

5

% 

5-

10

% 

10

-

20

% 

Hear

t 

IW-

QEIS

S 

IF-

QEIS

S 

W-
MOS

S 

mRM

R 

36 

20 

4 

1 

5.14 

4.00 

1.00 

1.00 

0.843

0: 7 

0.840

0: 6 

0.843

0: 6 

0.828
9: 6 

2

0 

(2

0) 

9 

(7

) 
3 

1 

(0

) 

1

6 

(1

6) 

1

1 

(1
1) 

1 

0 

(1

) 

21 

(2

1) 

6 

(8

) 

1 
0 

(0

) 

13 

(1

3) 

3 

(3

) 

1 
0 

(0

) 

Con

crete 

IW-

QEIS

S 

IF-

QEIS

S 

W-

MOS
S 

mRM

R 

61 

49 

5 

1 

11.8

7 

7 

1.00 

1.00 

0.843

0: 5 

0.824

0.: 7 

0.759

0: 6 

0.753

8: 6 

5

5 

(4

6) 

2

7 

(2

7) 
3 

1 

(1

) 

3

5 

(3

5) 

1

2 

(1

2) 
2 

0 

(0

) 

0 

(0

) 

0 

(0

) 

1 

0 
(0

) 

0 

(0

) 

0 

(0

) 

0 

0 
(0

) 

 

The IF-QEISS algorithm, like IW-QEISS, can find 

multiple feature subsets per cardinality level, but the 

accuracy of linked classifiers is generally lower since the 

search focuses on relevance, redundancy, and feature 

count rather than classification accuracy. However, this 
trade-off results in improved processing performance. As 

the number of candidate characteristics rises, the IW-

QEISS and IF-QEISS approaches frequently identify 

several quasi-equally informative subsets. For the Heart 

dataset, for instance, IW-QEISS discovered an average of 

5.14 subsets per cardinality level, frequently matching or 

surpassing the accuracy of the W-MOSS method. The 

table summarizes the number of subsets, average subsets 

per cardinality level, and the highest accuracy achieved 

by each method, highlighting that IW-QEISS typically 

identifies more accurate subsets with higher cardinality. 

The final columns show that IW-QEISS and IF-QEISS 
can discover many δ-quasi equally informative subsets, 

with the IW-QEISS method's maximum accuracy closely 

matching that of the W-MOSS algorithm, making changes 

in reference minimal. 

Categorization of Features 

Identifying multiple equally informative feature subsets at 

each cardinality level offers insights into the importance 

of selected attributes. A recent technique by Wang et 

al., 2023 categorizes features into strongly relevant, 

weakly relevant (non-redundant), and irrelevant 

groups. The Heart dataset illustrates this approach. 
 

 
Figure 4: The Heart Dataset's Quasi-Equally 

Informative Subsets' Feature Selection Frequency 

The IW-QEISS algorithm determined that 36 feature 

subsets were 0.05-quasi equally informative to the best 
subset, as shown in Figure 4. Each row represents a 

subset, and each column corresponds to one of the 13 

possible features. The presence of a feature in a subset 

is highlighted, with darker shades indicating higher 

cardinality. The figure shows that certain features, like 

12 and 13, consistently appear in subsets with 

cardinality 3 or higher, suggesting their strong 

relevance. Features like 8 and 9 enter the subsets at 

higher cardinalities, indicating varying levels of 

importance. The persistent presence of certain features 

across multiple subsets suggests they are more likely to 
be highly relevant, while infrequent features are likely 

less important. This approach allows for a nuanced 

categorization of features, distinguishing between 

strongly relevant, weakly relevant, and irrelevant 

features, aiding in the interpretation of the decision-

making process. 

 

CONCLUSION 

The development of the Improved Wrapper for Quasi 

Equally Informative Subset Selection (IW-QEISS) and 

its filter-based counterpart, F-QEISS, offers a robust 

solution for addressing multiple objectives in feature 
selection, including relevance, redundancy, and 

classification accuracy. By employing the concept of 

quasi-equivalency, these models identify subsets of 

features that maintain high predictive performance 

while improving interpretability and reducing 

redundancy. Extensive experimentation with high-

dimensional datasets showcases the method’s ability to 

outperform traditional single- and bi-objective 
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approaches. This advancement underscores the 

importance of multi-objective optimization in creating 

more stable, interpretable, and accurate machine learning 

models. Future research should continue to explore the 

method's applicability to diverse datasets and investigate 

further optimization strategies to enhance performance. 

Recommendation 

Based on the findings of this study, it is recommended 

that future feature selection efforts in machine learning, 

particularly for high-dimensional datasets, adopt multi-

objective optimization frameworks like IW-QEISS and 

IF-QEISS to identify multiple quasi-equally informative 

subsets. This approach enhances model robustness, 

interpretability, and flexibility in real-world deployment. 

Additionally, integrating these methods into various 

machine learning pipelines can improve decision-making 

by offering alternative feature configurations without 
compromising accuracy. Researchers and practitioners are 

encouraged to explore further refinement of the 

algorithms to support larger datasets and more complex 

classification tasks, while also considering hybrid 

integration with deep learning models for broader 

applicability.  
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