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ABSTRACT 
The analytical study of heat and mass transfer on magnetohydrodynamic 

(MHD) blood flow through bifurcated arteries under influence of an inclined 

magnetic field with thermal radiation and chemical reaction in the presence of 

Dufour effect has been investigated. The induced magnetic and electric fields 

generated by the blood are assumed to be negligible due to the low magnetic 

Reynolds number. The dimensionless system of governing equations was 

solved analytically with appropriate boundary conditions. The regular 

perturbation theory has been utilized to obtain the analytical solution for 
velocity, temperature and molar species of biofluid (blood). The validation of 

the analytical method was found suitable by obtaining numerical solutions with 

MATLAB and compared with the analytical results. The influence of Dufour 

number, magnetic field parameter, heat source parameter, Prandtl number, 

thermal radiation, Schmidt number and chemical reaction are discussed in 

details. Dual solutions for the axial velocity, temperature distribution, 

concentration profile, local skin coefficient, Nusselt number and Sherwood 

number were presented graphically for realistic values of 𝑃𝑟 and 𝑆𝑐as well as 

for arbitrary values of other parameters. The behaviour of primary parameter 

has been notably observed that the temperature variation was strongly 

dependent on concentration gradient due to the presence of Dufour effect. An 
increase in magnetic field and thermal radiation reduces the blood velocity 

within the arterial layers by generating a Lorentz force. An increase in Dufour 

number corresponds to lower molecular diffusivity due to the dispersal 

momentum diffusivity that leads to rise temperature gradient. 
 

INTRODUCTION 

Many authors have conducted extensive research studies 

in biofluids in the past few decades, with a particular 

focus on the theoretical impact of magnetohydrodynamics 

(MHD). MHD involves the investigation of the flow of 
electrically conducting fluids under the influence of a 

magnetic field. In the situation of human physiology, 

MHD can be employed to modulate blood flow rates in 

the arterial system. This approach holds promise in the 

treatment of cardiovascular conditions where accelerated 

blood flow, such as in hypertension and hemorrhages, 

exacerbates the disease. Mathematical analysis for a 

viscous, Newtonian blood flow through a bifurcated 

artery with the influence of magnetic field is carried out 

by (Sharma et al., 2004; Singh and Rathee, 2010; 

Eldesoky et al., 2019; Srinivasacharya and Rao, 2016; 

Shit and Roy, 2016; Hamza et al., 2024). The studies 
specifically investigated the impact of MHD flow in 

bifurcated arteries under the influence of a magnetic field 

with heat source. Authors in (Verma and Parihar, 2009;  

 

 

 

 

 

 

Sanyal and Biswas, 2010) described that the 

electromagnetic force (Lorentz force) acted upon an 

artery which resisted its motion and impeded blood. 

This resistance could be harnessed for treating 

conditions such as cardiovascular diseases where 
accelerated blood circulation is a concern. Authors like 

Tzirtzilakis (2005); Korchevskii and Marochnik (1965) 

developed mathematical model of bio-magnetic fluid 

dynamics (BFD) which made a description of the 

Newtonian blood flow under the action of magnetic 

field. This model was consistent with the principles of 

magnetohydrodynamic effect on blood flow which was 

integrating magnetization and electrical conductivity of 

blood. They considered blood as Newton fluid in their 

exploration of blood flow. The studies on the effect of 

MHD blood flow in the presence of heat source were 

described by (Sanyal et al., 2007; Ramamurthy et al., 
1994; Das et al., 2009) that the alteration in heat source 

was accelerated the temperature of the fluid flow. 

Combined heat and mass transport phenomena in the  
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human body have been paid attention for the examination 

of their effects by many authors. One of the three thermal 

mechanisms through which heat transfer can occur is 

convection, conduction or radiation while mass transfer is 

the net movement of mass from one position to another. 
Mass transfer can be found in many processes, such as 

evaporation, drying etc. Chakravarty and Santabrata 

(2005) investigated the influence of transport phenomena 

on blood flow through a bifurcated artery. Jamali et al. 

(2019) studied heat transfer simulation on blood flow 

through a stenosed bifurcated artery by considering blood 

as Newtonian fluid and revealed that the presence of 

stenosis with slightly change of the stenosis shape and 

value of Reynold number influenced to the velocity, 

temperature distribution and reverse flow re-circulation as 

indicated by negative flow near the arterial wall. Latha 

and Kumar (2016) focused on to discussing the effect of 
mass transfer on the flow of blood through parallel plate 

channel with radiation and heat source. Adhikary and 

Misra (2011) addressed the oscillatory flow of fluid and 

heat transfer in a porous oscillating channel with an 

external magnetic field while Lagendijk (1982) explored 

the influence of blood flow in large vessels on 

temperature distribution in hyperthermia. Suri and Suri 

(1981) proposed study of static magnetic field effect on 

blood flow through a bifurcated artery. Authors examined 

how a high magnetic field on blood flow rate, discovering 

that it induces a minor blockage. Eldesoky (2012) 
extended a model by Jain et al. (2009) with heat source. 

He mentioned heat source is capable to accelerate the 

blood flow and temperature distribution of the flowing 

region. Wang (2008) modelled blood flow in small tubes 

using a two-fluid model with fully developed constant 

heat flux and convective heat transfer.  

The analysis of thermal radiation and chemical reactions 

is closely associated with a variety of exothermic and 

endothermic processes. This interaction is particularly 

important in arterial blood flow, where the combined 

effects of thermal radiation and chemical reactions 

facilitate in describing internal flow within arteries. Such 
phenomena are especially relevant in medical 

applications. Furthermore, chemical reaction effects 

significantly influence transport processes, which are 

influenced by the combined action of buoyancy forces 

arising from thermal and mass diffusion. The effects of 

heat source and thermal radiation on MHD blood flow in 

a stenosed tapered artery has been investigated by 

(Omamoke et al., 2020; Kumar et al., 2021; Ahmed et al., 

2023) conducted a corresponding analysis of a bio-

magnetic fluid flow by the application of inclined 

magnetic force for the treatment of tumours. 
Several studies reveal that heat and mass transfer flow can 

be affected by diffusion-thermo. Convection becomes 

complicated when concentration and temperature occur 

simultaneously resulting to the effects of diffusion-thermo 

and thermal-diffusion. Diffusion thermo refers to the 

phenomenon when heat transfer is generated by 

concentration gradients in a fluid is termed as Dufour 

effect. This effect arises when heat and mass transfer 

interact simultaneously having an effect on different 

physical properties within a moving dynamical fluid. In 
Platten (2006); Reddy (2016); Hayat et al. (2012); 

Shukla et al. (2022) described the thermal diffusion 

caused by variations in the concentration of 

components within the fluid. A Mathematical Analysis 

made by Eckert and Drake Jr (1987) on heat and mass 

transfer. Authors particularly reported the considerable 

impact of the Dufour effect which cannot be neglected 

in analyses pertaining heat transfer. Jha and Gambo 

(2019) discussed an analytical approach on unsteady 

free convection and mass transfer flow past an 

impulsively started vertical plate with Soret and 

Dufour effects. Mishra and Nidhish (2023) investigated 
the effects of Soret and Dufour on MHD nanofluid 

flow of blood through a stenosed artery with variable 

viscosity. An investigation made by. Sharma et al., 

(2019) studied Soret and Dufour effects on bio-

magnetic fluid of blood flow through a tapered porous 

stenosed artery. 

A survey of literature revealed a numerous of authors 

have paid attention to the effect of diffusion-thermo 

phenomenon. However, there seems to be no literature 

with Dufour effect on MHD blood flow through 

bifurcated arteries. Therefore, the current investigation 
is concerned with the influence of Dufour effect, 

thermal radiation, chemical reaction and heat source on 

unsteady MHD blood flow passing through bifurcated 

arteries along with impact of an inclined magnetic field 

to the artery. It will help in the treatments of carotid 

body tumour, strokes and pain resulting from sickle 

cell anaemia and the treatment of low blood pressure, 

using magnetic field normal and also treatment of 

tumours with thermal radiation. 

The non-dimensionalisation of parameters in the 

system of equations is presented in the Material and 

Methods section. In the Method of Solution, the model 
equations are solved analytically using a regular 

perturbation theory. In the Results and Discussions 

section, computations are presented graphically to 

analyse the behaviour of fluid (blood) velocity, 

temperature, concentration as well as local skin 

friction, Nusselt number and Sherwood number. The 

Results and Discussions section outlines the key 

conclusions drawn from the present study. Some 

parameterized constants are provided in the Appendix. 

 

MATERIALS AND METHODS 

Consider the artery configuration through an 

asymmetrical bifurcation about 𝑥-axis as shown in 

Figure (1), which illustrates the blood flow between 

two electrically nonconducting infinite horizontal 

plates ideally located at 𝑦 = ±1. The mass flow rate at 
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any cross-section normal to the flow direction is 

expressed as 𝑚 = 2𝑑𝜌𝑣, where 2𝑑 is the channel width, 

𝜌 is the blood density and 𝑣 represents the mean velocity 

of a fluid. The angle of bifurcation is about zero due to 
the division of a parallel plate channel into two separate 

streams. The wall thickness at the bifurcated region is 

assumed to be negligibly small that the rate of mass flow 

in any cross-section of bifurcated regions to be 

represented by 𝑚/2.  

This exploration contemplates a time-dependent MHD 

blood flow within a parallel channel wall embedded in a 

porous medium. The flow is subjected to a uniform 

magnetic field applied transversely to the flow 

direction. Thus, porous medium is homogeneous and 

isotropic and the induced magnetic and electric fields 

generated by the blood are deemed negligible due to 

the low magnetic Reynolds number 𝑅𝑒 =  
𝜌�̅�

𝜇⁄ , which 

implies that their influence on the flow is minimal 

(Necatti, 1986).  Blood is treated as a Newtonian, 

incompressible, homogeneous and viscous fluid with 

the constant viscosity throughout the analysis. The 

Fåhræus–Lindqvist effect is neglected. See Refs. Zamir 

and Roach (1973), Kumar et al., (2021). 

 
Figure 1: Flow geometry of a bifurcated channel with inclined magnetic fields 

 

Let 𝑢′ and 𝑣′ be components of velocity along the 

Cartesian directions 𝑥′ and 𝑦′ respectively at time 𝑡′ in a 

flow field. The unsteady-state conservation of 

momentum, mass, energy and concentration can be 

described by the following equations (White, 2006) 

 
𝜕𝑢′

𝜕𝑡 ′
+

1

𝜌

𝜕𝑝′

𝜕𝑥′
=

𝜇

𝜌

𝜕2𝑢′

𝜕𝑦′2 −
𝑢′

𝐾
−

𝜎𝐵0
2sin2𝜑

𝜌
𝑢′+ 𝑔𝛽(𝑇′ − 𝑇′0) +

𝑔𝛽∗(𝐶′− 𝐶0′),                  (1)

   
𝜕𝑢′

𝜕𝑥′
+

𝜕𝑣′

𝜕𝑦′
= 0,       (2)

      
𝜕𝑇′

𝜕𝑡′
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇′

𝜕𝑦′2 +
𝑄

𝜌𝐶𝑝
(𝑇′− 𝑇0 ′) + 𝐷∗

𝜕2𝐶′

𝜕𝑦′2 −
𝜕𝑞𝑟

𝜕𝑦′
,  (3)

   
𝜕𝐶′

𝜕𝑡′
= 𝐷𝑚

𝜕2𝐶′

𝜕𝑦′2 − 𝑘1(𝐶 − 𝐶0) ,    (4) 

 

The third and last terms in equation (3) corresponds to the 

Dufour parameter and the radiative heat flux respectively. 

The induced radiative heat transfer is given by 𝑞𝑟 =
(4𝛿/3𝑘′)(𝑑𝑇 ′4/𝑑𝑦′). In the blood vessel, both 𝑇 and 𝑇0  

are sufficiently high and their difference is large enough 

to induce radiative heat transfer. This is based on the fact 

that at elevated temperatures, radiation becomes a 

significant mode of heat transfer. The temperature 

difference is expressed as 𝑇 ′ = 4𝑇0
3𝑇 − 3𝑇′ where 𝑇0

′  
represents the ambient temperature. This is derived 

from the Roseland approximation for radiative heat 

transfer which simplifies the Stefan-Boltzmann 

equation under conditions of high temperature 

gradients. Thus, the radiative heat transfer is given by 

𝑞𝑟 = (16𝛿𝑇0
3/3𝑘′)(𝑑𝑇 ′/𝑑𝑦′), where 𝑘′ indicates the 

Roseland mean absorption coefficient and 𝛿  is the 

Stefan-Boltzmann constant. 

In equation (4), 𝐷𝑚 is the diffusion coefficient and the 

last term represents the reaction rate, where  𝑘1 denotes 

the rate of drug diffusion across the affected region. 

This equation is used to determine the level of drug 

concentration in the affected region. Ref. Granot and 

Rubinsky (2008). 

The appropriate boundary conditions are Latha and 
Kumar (2016); Prakash et al., (2011): 

 
                (5) 

Introducing the following dimensionless variables 

{
 

 𝑥
′ =

𝑥

𝑑
,   𝑢′ =

𝑢

(
𝑚

2𝑑𝜌
)
,   𝜙 ′ =

𝜙(2𝑑3𝜌2)

𝑚𝜇
,    𝑓(𝑥, 𝑡) =

(𝜕𝑝 𝜕𝑥)⁄

(𝑚𝜇 2𝑑3𝜌)⁄
,

𝑦 ′ =
𝑦

𝑑
,   𝑣 ′ =

𝑣

(
𝑚

2𝑑𝜌
)
,   𝜃 ′ =

𝜃(2𝑑3𝜌2)

𝑚𝜇
,   𝑡 ′ =

𝑡

(𝑑2𝜌/𝜇 )
,   𝜂 =

𝜇

𝜌
 ,
}
 

 

,      (6) 
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Equations (1)-(4) are transformed into dimensionless 

forms by equation (6), then the model equations of motion 

are given by: 

 
𝜕𝑢

𝜕𝑡
+ 𝑓 =

𝜕2𝑢

𝜕𝑦2
− (𝑀2sin2𝜑+

1

𝑛𝑝
)𝑢 + 𝑔𝛽𝜃 + 𝑔𝛽𝜙, (7) 

       
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,     (8)

       
𝜕𝜃

𝜕𝑡
= (

1

𝜂𝑃𝑟
+𝑅)

𝜕2𝜃

𝜕𝑦2
+

𝐻

𝜂𝑃𝑟
𝜃 +

𝐷𝑓

𝜂𝑃𝑟

𝜕2𝜙

𝜕𝑦2
,  (9)

       
𝜕𝜙

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝜙

𝜕𝑦2
− 𝐶𝑙𝜙,               (10)

     

where,  
 

{
𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, 𝑆𝑐 =

𝜇

𝜌𝐷𝑚
, 𝐷𝑓 =

𝐷∗𝑘

𝜇𝐶𝑝
, 𝐻 =

𝑄𝑑2

𝑘

𝑀2 =
𝜎𝐵0

2𝑑2

𝜌
, 𝑅 =

16𝛿′𝑇0
3

3𝜂𝑘 ′
,   𝐶𝑙 =

𝜌𝑑2𝑘1

𝜇
, 𝑛𝑝 =

𝐾𝜌𝑑2

𝜇

}. 

 

Method of Solution 

In order to derive analytical solutions to equations (7)-

(10) subject to the boundary condition, the regular 

perturbation method is applied to take the forms as 

𝑢(𝑦, 𝑡) = 𝑢0(𝑦)𝑒
−𝛾2𝑡 ,    (11) 

      

𝑣(𝑦, 𝑡) = 𝑣0(𝑦)𝑒
−𝛾2𝑡 ,    (12) 

  

𝜃(𝑦, 𝑡) = 𝜃0(𝑦)𝑒
−𝛾2𝑡,    (13) 

     

𝜙(𝑦, 𝑡) = 𝜙0(𝑦)𝑒
−𝛾2𝑡  ,   (14) 

      

Equation (5) is reduced to 

 
𝜙0 = 1,   𝜃0 = 1,   𝑢0 = 1, 𝑣0 = 1   𝑎𝑡   𝑦 = −1
𝜙0 = 0,   𝜃0 = 0,   𝑢0 = 0,  𝑣0 = 0   𝑎𝑡   𝑦 = +1

}, 

 (15) 

 

In view of equations (11)-(14), equations (7)-(10) reduce 

to 
𝜕2𝑢0

𝜕𝑦2
+ 𝑎9

2𝑢0 = ℏ − 𝑔𝛽𝜃0 − 𝑔𝛽′𝜙0,   (16)

     

𝑣0 = 𝑎2,      (17) 

    
𝜕2𝜃0

𝜕𝑦2
+ 𝑎8

2𝜃0 = −𝑎5
𝜕2𝜙0

𝜕𝑦2
,                 (18) 

    
𝜕2𝜙0

𝜕𝑦2
+ 𝑎7

2𝜙0 = 0.    (19)

     

Equation (11) yields the blood velocity in the direction of 

axial flow 

   

𝑢(𝑦, 𝑡) =

[

𝑎15 − 𝑎16𝑐𝑜𝑠𝑎7𝑦 + 𝑎17𝑠𝑖𝑛𝑎7𝑦 − 𝑎18𝑐𝑜𝑠𝑎8𝑦
+𝑎19𝑠𝑖𝑛𝑎8𝑦

−𝑎20𝑐𝑜𝑠𝑎7𝑦 + 𝑎21𝑠𝑖𝑛𝑎7𝑦 + 𝑎22𝑐𝑜𝑠𝑎9𝑦
−𝑎23𝑠𝑖𝑛𝑎9𝑦

] 𝑒−𝛾
2𝑡            

                           (20) 

As given by equation (12), the blood velocity through 

the artery normal to the flow is described as 

𝑣(𝑦, 𝑡) = 𝑎2𝑒
−𝛾2𝑡            (21) 

 

From equation (13), the temperature field in the arterial 

blood yields 
 

𝜃(𝑦, 𝑡) = [𝑎11𝑐𝑜𝑠𝑎7𝑦 − 𝑎12𝑠𝑖𝑛𝑎7𝑦 + 𝑎13𝑐𝑜𝑠𝑎8𝑦 −

𝑎14𝑠𝑖𝑛𝑎8𝑦]𝑒
−𝛾2𝑡                   (22) 

 

The concentration profile is given by equation (14), we 

obtain  
 

𝜙0(𝑦) = [
𝑐𝑜𝑠𝑎7𝑦

2𝑐𝑜𝑠𝑎7
−

𝑠𝑖𝑛𝑎7𝑦

2𝑠𝑖𝑛𝑎7
] 𝑒−𝛾

2𝑡          (23) 

 

The local skin friction coefficient (𝐶𝑓), Nusselt number 

(Nu) and Sherwood number (Sh) are dimensionless 

quantities that indicate the rates of momentum, heat 

and mass transfers process respectively. These 

quantities are utilized to investigate the boundary layer 

behaviour in blood flow and convective transport 
phenomena. The local skin friction, along with the 

Nusselt number and Sherwood number will be 

computed at the upper wall of the bifurcated region 

where y =  −1. 

 

𝐶𝑓 = −𝜇 (
𝜕𝑢

𝜕𝑦
)
𝑦=−1,

           (24) 

 

𝑁𝑢 = (
𝜕𝜃

𝜕𝑦
)
𝑦=−1,

           (25) 

 

𝑆ℎ = (
𝜕𝜙

𝜕𝑦
)
𝑦=−1,

          (26) 

 

Local Skin Friction Coefficient: 

Thus, the local skin friction is obtained by (24) as 

follows 
 

𝐶𝑓 =

𝜇 [

𝑎16𝑎7𝑠𝑖𝑛𝑎7𝑦 − 𝑎17𝑎7𝑐𝑜𝑠𝑎7𝑦 + 𝑎18𝑎8𝑠𝑖𝑛𝑎8𝑦
−𝑎19𝑎8𝑐𝑜𝑠𝑎8𝑦

+ 𝑎20𝑎7𝑠𝑖𝑛𝑎7𝑦 − 𝑎21𝑎7𝑐𝑜𝑠𝑎7𝑦 + 𝑎22𝑎9𝑠𝑖𝑛𝑎9𝑦
−𝑎23𝑎9𝑐𝑜𝑠𝑎9𝑦

] 𝑒−𝛾
2𝑡     

                 (27) 
 

Heat Transfer Coefficient: 

The dimensionless form for the rate of heat transfer 

coefficient at the lower wall of the bifurcation in terms 

of the Nusselt number is defined by (25) as 
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𝑁𝑢 = [𝑎11𝑎7𝑠𝑖𝑛𝑎7 − 𝑎12𝑎7𝑐𝑜𝑠𝑎7 + 𝑎13𝑎8𝑠𝑖𝑛𝑎8 −

𝑎14𝑎8𝑐𝑜𝑠𝑎8]𝑒
−𝛾2𝑡                                  (28) 

 

Mass Transfer Coefficient: 

The rate of mass transfer coefficient at the lower wall of 

the bifurcation in terms of the Sherwood number is given 

by equation (26) as 
 

𝑆ℎ = −𝑎7 [
𝑐𝑜𝑠2𝑎7

𝑠𝑖𝑛2𝑎7
] 𝑒−𝛾

2𝑡                   (29) 

 

Validation and Accuracy  

In order to benchmark the integrity of the current 

analytical approach, a methodical comparative study 

has been instigated in conjunction with the prior 

investigations carried out by Ahmed et al., (2023) and 

Eldesoky (2012) and found them in excellent 
agreement as demonstrated in Table 1 and Table 2, 

respectively. These tables corroborate that the adopted 

flow model is robustly validated and lends itself to 

further exploration through a variety of distinct 

physical parameters. 

 

Table 1: Distribution of axial velocity for R, M, 𝑪𝒍, Sc and t with mass flux at γ = 1, f = 0.5, η = 0.1, t = 1, Sc = 

0.5, Pr = 0.7, H = 0.1, 𝑫𝒇 = 0, g = 1.5, β = 0.5 and 𝜷
𝟎

 = 0.5. 

 

 

Table 2: Distribution of temperature field for H, Pr and R without mass flux at R, H, and Pr with mass flux at 

γ = 0.3, η = 0.1, t = 2, 𝑫𝒇 = 𝑹 = 0 
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In Table 1, the velocity of the bio-fluid is attenuated by 

the opposing influence of the magnetic drag force, 

whereas the Prandtl number serves to shrink the velocity, 

whereas the reduction in axial velocity is slightly due to a 

time elapse.  
In Table 2, an increase in heat source induces an 

overshoot in temperature, while a rise in the Prandtl 

number leads to a corresponding elevation in temperature. 

In the other hand, it is observed that an elevation in the 

radiation results in a diminution of temperature. In the 

absence of Dufour number, the present work has a good 

agreement with Eldesoky (2012). 

 

RESULTS AND DISCUSSION 

The authors systematically scrutinized the effects of the 

Dufour phenomenon and thermal radiation along with the 

influences of heat source, chemical reactions in the 
presence of inclined magnetic fields. Dual results have 

been computed for axial velocity, temperature 

distribution, concentration profile, skin friction, Nusselt 

number and Sherwood number as a function of various 

governing parameters. The Dufour number (𝐷𝑓), chemical 

reaction parameter (𝐶𝑙), Prandtl number (Pr), Schmidt 

number (Sc), heat source parameter (H), magnetic 

parameter (M), decay parameter (γ), radiation parameter 

(R) and time (t). The magnitudes of Prandtl number (Pr) 

are nominated for air (Pr = 0.7) at 20℃, pure water (Pr = 

7.0). Similarly, the values of the Schmidt number (Sc) are 

chosen for water-vapour (Sc = 0.60). The identified 

parameters are set default at 𝜓 = 0.75,γ = 0.1, f = 0.5, η 

= 0.25, t = 1, Sc = 0.5, Pr = 0.7, R = 0.5, M = 0.5, 𝐷𝑓 = 

0.1, µ = 0.5, 𝐶𝑙 = 0.5, g = 1.5, β = 0.5 and 𝛽0 = 0.5. 

The solutions for the governing equations are graphically 
reported in Figures (2)-(16). 

In Figure (2), the influence of magnetic field parameter 

(M) and Dufour number (𝐷𝑓) on the axial velocity. As M 

increases from M = 0.25 to M = 0.45, the axial velocity 

profile decreases for 𝐷𝑓= 0.10, 0.30, 0.50, 1.00. Dufour 

effect is also known as diffusion-thermo effect. By 

definition, 𝐷𝑓 heat generation due to solute concentration 

gradient.  

𝐷𝑓 = Energy flux due to mass diffusion/Energy flux due 

to thermal conduction 

High values of 𝐷𝑓imply that the solute diffusion 

contributes significantly to heat transport. While, low 

values of 𝐷𝑓 illustrate that thermal conduction dominates 

heat transfer. It is indicated that the magnetic field creates 

a retarding force (Lorentz force), which slows down the 

motion of the molecules of the blood fluid due to 

increased resistance. It can also stabilize irregular blood 

flow caused by arterial branching or irregular geometries. 

An increasing 𝐷𝑓 enhances energy transport in blood 

which could enhance the delivery of heat-sensitive drugs 

or reduce thermal gradient. 

Figure (3), shows the influence of chemical reaction 

parameter (𝐶𝑙) and the Dufour number (𝐷𝑓) on the axial 

velocity. Chemical reaction parameter (𝐶𝑙) quantifies the 

impact of chemical reactions within the flow. Higher 

values of 𝐶𝑙correspond to stronger chemical reactions, 

which can influence the concentration and velocity 

profile of the fluid. As 𝐶𝑙increases from 𝐶𝑙= 0.51 

to 𝐶𝑙= 0.81, the axial velocity decreases across the 

entire transverse range. Strong chemical reaction 
absorbs energy from the flow, which lead to reduce 

axial velocity. An increasing 𝐷𝑓raises the axial 

velocity, especially near the channel centreline (y = 

0). The enhanced thermo-diffusion 𝐷𝑓supplies 

additional energy to the flow that counteract 

viscous force and improve velocity. 

Figure (4) displays the impact of the heat source 

parameter (H) and the Dufour number 𝐷𝑓 on the 

axial velocity u(y, t) across the channel width (y). 

The increase in H from H = 0.5 to 𝐻 = 1.5 

enhances the axial velocity. This is because a 

higher heat source introduces more energy into the 

biofluid that reduces the viscosity effect and 

promotes flow acceleration. Heat source (H) could 

simulate local heat effect such as inflammation. 

Similarly, increasing the Dufour number 

𝐷𝑓enhances axial velocity. A larger 𝐷𝑓signifies 

more heat being transferred to molecular motion 

aiding flow of the biofluid. 

Figure (5) illustrates the impact of the Dufour 

number (𝐷𝑓) and the thermal radiation R on the 

axial velocity u(y, t). The growing in 𝐷𝑓 = 0.2 and 

𝐷𝑓= 1.0 with different values of (R) represented as 

R = 0.50, 1.00, 1.50, 2.00. As 𝐷𝑓 increases the 

axial velocity rises initially (closer to y = 0) but 

decreases more rapidly away from the centreline (y 

= ±1). It can be seen that low 𝐷𝑓, radiation has a 

lesser impact and the flow remains smoother 

across y while high 𝐷𝑓, the influence of R becomes 

pronounced with an exaggeration in velocity peak 

and with steepness in the gradient along y. Since 

thermal radiation (R) represents the intensity of 

thermal radiation. Thus, an increasing R 

consistently raises the peak axial velocity near the 

centreline (y = 0) implying that thermal radiation 

amplifies the flow speed in the core region. 

However, the velocity diminishes more steeply as 

y approaches ±1. 

In Figure (6), depicts the effects of heat source (H) 
and Schmidt number (Sc) on axial velocity u(y, t) 

for H = 0.5 to H = 1.5 with the variation in 

Schmidt number Sc= 1.00, 1.10, 1.20, 1.30. By 

definition, heat source (H) represents internal heat 

generation or absorption in the biofluid when, 

H> 0: Heat is being generated (source) 

H< 0: Heat is being absorbed (sink) 

The Schmidt number (Sc) is defined as the ratio of 

momentum diffusivity (viscosity) to mass 

diffusivity and it is particularly useful for 

characterizing fluid flows where momentum 

diffusion and mass diffusion occur simultaneously 
during convection processes. In this study, we 

consider H > 0 so that at H = 0.5, the impact of Sc 

on axial velocity is more moderate, as the biofluid 

(blood) generates less heat. At H = 1.5, the 
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velocity differences between different Sc values become 

more pronounced with a reflection of the amplified 

interaction between heat generation and reduced solute 

diffusivity. 

 

 
Figure 2: Influence of 𝑴,𝑫𝒇on 𝒖(𝒚, 𝒕) 

 
Figure 3: Influence of 𝑪𝒍,𝑫𝒇 on 𝒖(𝒚, 𝒕) 

 

Figure (7) presents the impact of Prandtl number (Pr) and 

Dufour number (𝐷𝑓) on temperature distribution θ(y, t). 

At higher 𝐷𝑓, the temperature profile rises significantly, 

but the influence of increasing Pr becomes more 

noticeable in suppressing the temperature. For lower 𝐷𝑓, 

the impact of Pr changes is less pronounced due to 
reduced coupling between diffusion mechanisms. The 

molecules have freedom to move freely. 

In Figure (8), the temperature distribution (θ) for H = 0.5 

and H = 1.0 is plotted with different values of Pr when 

the parameter R = 0.2. It is observed that the influence of 

𝐻 at higher values lead to an enhancement in the 

blood flow temperature within the arterial region. 

Moreover, a similar effect is noticed that when the 

momentum diffusivity thermal dominates over 
diffusivity so that the elevation in the biofluid 

temperature occurs due to higher values of Pr. 

In Figure (9), the influence of the Dufour number 

(𝐷𝑓) and the Schmidt number (Sc) on the 

temperature field (θ) is examined for 𝐷𝑓 = 1 and 𝐷𝑓 

= 3.0 at different values of Sc. It is observed that 

the level of 𝐷𝑓uplifts, the temperature field 

increases. As expected, the θ is demonstrated much 

sufficiency with increasing Sc across region. 

 
Figure 4: Influence of 𝑯,𝑫𝒇 on 𝒖(𝒚, 𝒕) 

 
Figure 5: Influence of 𝑫𝒇, 𝑹 on 𝒖(𝒚, 𝒕) 

Figure (10) shows the impact of the chemical 

reaction parameter (𝐶𝑙) and the Schmidt number 

(Sc) on the concentration profile. It can be 

observed that as 𝐶𝑙increases from 𝐶𝑙 = 0.50 to 𝐶𝑙= 

1.85 with the varied Schmidt number (Sc = 0.00, 



 

Impact of Dufour and Thermal Radiation on … Ya’u et al.  

 
JOBASR2025 3(3): 308-321 

 

 

315 

0.50, 0.70, 1.00), the concentration profile decreases more 

rapidly. As Sc increases, the concentration profile 

becomes steeper. It illustrates the behaviour that the 

higher values of Schmidt number which correspond to 

lower molecular diffusivity lead in greater concentration 

gradients. Generally, both parameters (𝐶𝑙 and Sc) 

significantly affect the concentration profile. Higher 

values of 𝐶𝑙 and Sc correspond to faster decay and steeper 

profiles, respectively.  

In Figure 11, It is illustrated that the increase in normal 

velocity with a higher decay parameter, this shows a more 

rapid response of the system to transient changes. In 

physiological terms, a more compliant arterial system or 

reduced peripheral resistance may lead to faster changes 

in blood flow velocity after systole. Similar to the system 
described reaching a saturation point, the cardiovascular 

system also has limitations. Once arteries are maximally 

dilated or contractile responses are exhausted, further 

increases in the decay parameter or other regulatory 

factors have diminishing effects on blood flow velocity. 

Figure (10) shows the impact of the chemical reaction 

parameter (𝐶𝑙) and the Schmidt number (Sc) on the 

concentration profile. It can be observed that as 

𝐶𝑙increases from 𝐶𝑙 = 0.50 to 𝐶𝑙= 1.85 with the varied 

Schmidt number (Sc = 0.00, 0.50, 0.70, 1.00), the 
concentration profile decreases more rapidly. As Sc 

increases, the concentration profile becomes steeper. It 

illustrates the behaviour that the higher values of Schmidt 

number which correspond to lower molecular diffusivity 

lead in greater concentration gradients. Generally, both 

parameters (𝐶𝑙and Sc) significantly affect the 

concentration profile. Higher values of 𝐶𝑙and Sc 

correspond to faster decay and steeper profiles, 

respectively.  

In Figure 11, It is illustrated that the increase in normal 
velocity with a higher decay parameter, this shows a more 

rapid response of the system to transient changes. In 

physiological terms, a more compliant arterial system or 

reduced peripheral resistance may lead to faster changes 

in blood flow velocity after systole. Similar to the system 

described reaching a saturation point, the cardiovascular 

system also has limitations. Once arteries are maximally 

dilated or contractile responses are exhausted, further 

increases in the decay parameter or other regulatory 

factors have diminishing effects on blood flow velocity. 

 
Figure 6: Influence of H, 𝑺𝒄 on 𝒖(𝒚, 𝒕) 

 

 
Figure 7: Influence of 𝑫𝒇, 𝑷𝒓 on 𝜽(𝒚, 𝒕) 
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Figure 8: Influence of 𝑯,𝑷𝒓 on 𝜽(𝒚, 𝒕) 

 In Figure (12), the behaviour of the Dufour number (𝐷𝑓 ), 

Schmidt number (Sc) and time (t) on the coefficient of 

skin friction (𝐶𝑓 ) for  𝐷𝑓 = 0.2 and 𝐷𝑓 = 0.6 with varying 

values of Sc is plotted having the parameters, H = 0.5, R = 

0.5, 𝐶𝑙= 0.1. Skin friction represents the shear stress 

exerted by the fluid on a boundary. In blood flow, it 

influences endothelial cell response and vascular 

resistance. The definition of 𝐷𝑓 is the dimensionless 

parameter that quantifies the effect of mass flux due to 

temperature gradients in a fluid. It represents the 

contribution of thermal diffusion to species transport. In 

biological flows, the Dufour effect plays a significant role 

in heat transfer influenced by solute concentration 

 
Figure 9: Influence of 𝑫𝒇, 𝑺𝒄 on 𝜽(𝒚, 𝒕) 

 

 variation. As 𝐷𝑓 increases, skin friction increases. It is 

clearly noted that a stronger   𝐷𝑓 enhances momentum 

transfer, which could lead to higher shear stress at the 

vessel walls. Schmidt number (Sc) is defined as the 

ratio of momentum diffusivity (kinematic viscosity) to 

mass diffusivity. A higher Schmidt number implies 

lower mass diffusivity. The presence of different 

Schmidt number (Sc = 1.00, 1.50, 2.00) indicates 

varying diffusivity. Higher values of Sc mean lower 

mass diffusion which lead to an increase in 𝐶𝑓 . It is 

noted that in blood plasma and cellular transport, 
where lower diffusivity may increase resistance to 

flow. 

 
Figure 10: Influence of 𝑺𝒄, 𝑪𝒍 on 𝒖(𝒚, 𝒕) 

 
Figure 11: Behaviour of t, γ on normal velocity 
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Figure 12: Behaviour of 𝑺𝒄,𝑫𝒇 on Skin Friction 

 
Figure 13: Behaviour of M, Cl on Skin Friction 

 

 
Figure 14: Behaviour of H, R on Skin Friction 

 

Figure (13), the coefficient of skin friction ( 𝐶𝑓  ) for 

values of M = 0.5, M = 0.55 with varying values of 𝐶𝑙is 
displayed having the parameters, H = 0.5, Sc = 0.5, 

 𝐷𝑓 = 0.2. As M increases, the magnetic drag force 

becomes more dominant, significantly increasing the 

velocity gradient at the wall and thereby increasing 

 𝐶𝑓 . With increasing 𝐶𝑙, the skin friction coefficient 

progressively increases. 

   In Figure (14), the behaviour of the magnetic 

parameter (M), Dufour number ( 𝐷𝑓 ) on skin friction 

( 𝐶𝑓 ) as a function of time (t) for magnitudes of M = 

0.5 and M = 0.55 with varying values of  𝐷𝑓 is plotted 

having the parameters Sc = 0.5,  𝐷𝑓 = 0.2, 𝐶𝑙= 0.1. Heat 

source (H) represents energy addition due to an 
external or internal heat generation source. In blood 

flow, heat sources can be metabolic processes, external 

heating such as hyperthermia treatment, viscous 

dissipation etc. Increasing H increases skin friction, 

this indicates that the higher heat generation leads to 

enhanced shear stress at the boundary. Thermal 

radiation (R) quantifies heat transfer via radiative 

effect. In biofluids, radiation heat transfer can be 

applicable in hyperthermia therapy, laser treatment, 

and physiological thermoregulation. Higher radiation 

contributes to more heat transfer which increase 

temperature gradient and it leads to enhance velocity 
near the wall and greater shear stress. 

In Figure (15), the influence of time (t), Dufour 

number ( 𝐷𝑓 ), Prandtl Number (Pr) over Nusselt 

Number (Nu) is presented for  𝐷𝑓  = 0.1 and  𝐷𝑓  = 1.0 

with different values of Pr. The Nusselt number (Nu) 

represents the ratio of thermal energy convected to 

thermal energy conducted across the blood flow 

boundary. Convection has a compromise between 
advection and molecular diffusion. The Nusselt 

number (Nu) can be defined as the ratio of convective 

heat transfer to conductive heat transfer. So, 

conductive heat transfer dominates over convective 

heat transfer due to the turbulent blood flow. It is 

perceived that 𝑁𝑢 is inversely proportional to both Pr 

and  𝐷𝑓. As Pr increases, the thermal boundary layer 

thickens by reducing heat transfer efficiency and 

instantly decreasing 𝑁𝑢. For higher 

dissimilar 𝐷𝑓 values diminish convective heat transfer, 

further reducing Nu. In addition, Nusselt number 

approaches zero over time (t). This clearly indicates 

that a steady-state condition where convective and 

conductive heat transfer mechanisms balance out. 
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Figure 15: Behaviour of Sc,𝑪𝒍 on Nusselt Number 

 
Figure 16: Behaviour of Sc, Cl on Sherwood Number 

In Figure (16), the influence of time (t), the chemical 

reaction parameter (𝐶𝑙) and the Schmidt number (Sc) on 

the Sherwood number (Sh) are examined for Sc = 0.75 

and Sc = 1.25, with varying 𝐶𝑙. The Sherwood number 

(Sh) is a dimensionless quantity used in mass transfer 

operations that describes the ratio of convective mass 

transfer to mass diffusivity. It also represents the mass 
transfer coefficient for transport from a moving fluid to a 

cluster of spherical particles particularly in system with 

high porosity. The Sherwood number is commonly used 

in cases where the Schmidt number is present. The results 

indicate that the enhancement in the chemical reaction 

parameter and Schmidt number leads to reduce the 

Sherwood number over time. 

 

CONCLUSIONS  

The flow model has been analytically solved by means 

of regular perturbation technique. The behaviour of 
velocity, temperature and concentration profiles in the 

company of uniform inclined magnetic field are 

depicted through graphical representations. 

Furthermore, the skin friction, heat and mass transfer 

coefficients have been computed at the artery wall. The 

current research is the generalization of established 

mathematical model of Eldesoky (2012) on time-

dependent flow of blood. The analytical solutions are 

validated by comparison with numerical solutions. A 

comparative analysis with the studies of Eldesoky 

(2012) and Ahmed et al., (2023) —where the Dufour 

effect is neglected or radiation and reaction are absent, 
validates the findings. The key findings are 

summarized as follows: 

 

 The influence of magnetic force, chemical 

reaction has been notably observed in this 

blood flow model. The magnetic field 

parameter reduces the fluid velocity by 

generating a Lorentz force. An increase in 

chemical reaction decreases fluid motion, 

thereby slowing the axial velocity.  

 As values of Dufour number increase at low 
magnetic parameter, the phenomenon reduces 

the resistance to flow and enhances the 

velocity field by introducing thermal energy. 

 It is illustrated that the diminution in thermal 

radiation leads to rise the axial velocity by 

reducing the flow within the arterial layers the 

particles are of huge mass diffusivity. 

 As Prandtl number decreases then the velocity 

of the blood exhibits Newtonian behaviour, 

laminar flow (i.e., parabolic about y = 0) and 

the velocity shrinks near the wall by 
increasing thermal gradient which leads a 

stable flow. 

 The temperature distribution becomes lower 

across the region with increasing Prandtl 

number as result of the dispersal thermal 

diffusivity whereas the enhancement in 

Dufour number and heat source increase the 

temperature due to the sudden domination of 

momentum diffusivity. 

 It is observed that the increase in Dufour 

number leads to higher skin friction due to 
increased energy transfer from mass diffusion. 

 Negative Nusselt number indicates heat 

transfer is predominantly governed by 

convection, rather than the expected 

conduction.  
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 Negative Sherwood number indicates a reversal 

of the typical mass transfer behaviour, where 

convection becomes the dominant mechanism 

over diffusionspecie concentration on natural 

convection flow through a channel. 
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Appendix A 

 

NOMENCLATURE 

G       Constant 

Sc      Schmidt number 
Pr      Prandtl number 

k        Thermal conductivity 

Cp      Heat capacity 

Q       Heat quantity 

B0      Magnetic field intensity 

M       Magnetic field 

Nu      Nusselt number 

T         Dimensional temperature 

T0        Wall temperature 

g         Gravitational acceleration 

D*       Dimensional Dufour parameter 

𝐷𝑓       Dufour Number 

D        Diffusion coefficient 

t'         Dimensional time 

t          Dimensionless time 

p’         Dimensional pressure 

u          Velocity in the x−direction 

v         Velocity in the y−direction 

Cf      Skin friction 

f          Dimensionless pressure 

d        Channel diameter 
Re      Magnetic Reynold’s number 

qr       Radiative heat flux 

�̅�       Mean velocity 
1

𝑛𝑝
       Porosity parameter 

m       Rate of mass flow 

R      Thermal radiation parameter 

H      Heat source 

Cl     Chemical reaction 

k1     Net diffusion of the drug 

k’      Roseland’s mean absorption coefficient 

 

Greek Symbols 
ρ      Density of blood 

α      Thermal diffusivity 

𝜂       Kinematic viscosity 

φ      Dimensionless concentration 

θ       Dimensionless temperature 

σ       Electrical conductivity 

γ       Decay rate parameter 

µ       Dynamic viscosity 

δ       Stefan-Boltzamanm constant 

β       Thermal expansion 
β0      Concentration expansion 

 

 

 

 

 

 

Appendix B 

ℏ =
𝑓

𝑒−𝛾
2𝑡
 ,    

𝑎1 = 𝑀
2sin2𝜑 

1

𝑛𝑝
+  , 

 𝑎2  = 𝐺(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

𝑎3 =
1

𝜂 𝑃𝑟
+ 𝑅,    

𝑎4 = 
𝐻

𝜂 𝑃𝑟
,    

𝑎5 = 
𝐷𝑓
𝜂 𝑃𝑟

, 

𝑎6 = 
𝑎5
𝑎3
,  

𝑎7 = √(𝛾
2 − 𝐶𝑙)𝑆𝑐,  

𝑎8 = √
𝛾2 + 𝑎4
𝑎3

,   

𝑎9 = √𝛾
2 − 𝑎1, 

𝑎10 = 𝑎6𝑎7
2,   

 𝑎11 =
𝑎10

2(𝑎8
2−𝑎7

2)𝑐𝑜𝑠𝑎7
,  

 𝑎12 =
𝑎10

2(𝑎8
2−𝑎7

2)𝑠𝑖𝑛𝑎7
, 

𝑎13 =
1

2𝑐𝑜𝑠𝑎8
[1 − 2𝑎11𝑐𝑜𝑠𝑎7],    

𝑎14 =
1

2𝑠𝑖𝑛𝑎8
[1 − 2𝑎12𝑐𝑜𝑠𝑎7],  

𝑎15 =
ℏ

𝑎9
2, 

 𝑎16 =
𝑔𝛽𝑎11

𝑎9
2−𝑎7

2,      

𝑎17 =
𝑔𝛽𝑎12
𝑎9
2 − 𝑎7

2,   

 𝑎18 =
𝑔𝛽𝑎13
𝑎9
2 − 𝑎8

2,   

 𝑎19 =
𝑔𝛽𝑎14
𝑎9
2 − 𝑎8

2, 

𝑎20 =
𝑔𝛽𝑎14
2𝑐𝑜𝑠𝑎7

,  

 𝑎21 =
𝑔𝛽′𝑎14
2𝑠𝑖𝑛𝑎7

,  

𝑎22 =
1

2𝑐𝑜𝑠𝑎9
[1 − 2𝑎15 + 𝑎16𝑐𝑜𝑠𝑎7 + 2𝑎18𝑐𝑜𝑠𝑎8

+ 2𝑎20𝑐𝑜𝑠𝑎8] 

𝑎23 =
1

2𝑠𝑖𝑛9𝑎7
[1 + 𝑎17𝑐𝑜𝑠𝑎7 + 2𝑎19𝑐𝑜𝑠𝑎8

− 2𝑎21𝑐𝑜𝑠𝑎7] 
 


