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ABSTRACT 

Effective algorithms for queue management are crucial in place of guaranteeing 

maximum efficiency in gateway routers since network traffic continues to expand 

dramatically. An online researcher has suggested the Active Queue Management 

(AQM) strategy regarding the upcoming generation of gateway switches. The 

common active queue scheme remains (RED) Random Early Detection. Random 

early detection is susceptible to parameterization issues and lacks a self-

adaptation mechanism. Several RED variants have been formed; nevertheless, 

variations in traffic load have an adverse effect on all of them. Due to the fact that 

each has a static drop pattern, to address the RED and its variation schemes, the 

SARED system, or the design of self-adaptive random early detection was 

created. But in order to prevent congestion, during the time when the queue length 

surpasses a present maximum threshold limit, SARED aggressively removes 

packets. This causes networks having a lot of traffic situations the average is 

expected to increase queue delay, so in those cases, SARED should be less 

aggressive. This paper develops a priority-based queuing congestion control 

method for IoT gateways to manage network congestion. Our method (priority-

based algorithms) performs substantially better with regard to throughput, delay, 

and packet loss than the present methods of SARED. The outcomes of the 

conducted simulation experiments have shown that in scenarios with heavy traffic 

loads, priority-based self-adaptive random early detection (PSARED) has greatly 

decreased average queuing delay by 3%, minimized average throughput by 1%, 

and decreased the rate of packet loss by 10% in contrast to SARED.

 

INTRODUCTION 

The increasing demand for fast data transfer and the quick 

growth of network traffic present formidable obstacles 

regarding gateway routers in terms of effectively are 

controlling their queues to guarantee dependable and 

seamless net functionality (Karmanje et al., 2023; Atzori 

et al., 2010; & Varghese et al., 2017). By regulating 

packet transmission and averting network congestion, 

queue management algorithms contribute significantly to 

the upkeep of ideal gateway router performance (Floyd, 

& Jacobson, 1993; Jain, 1990). In order to prevent 

congestion, gateway routers have historically employed 

the tail-drop queue management technique. When a tail-

drop method is used to fill a queue that is full, some 

packets are discarded till there is sufficient room in queue 

for new traffic flow (Adamu et al., 2021). Nevertheless, 

Tail Drop is not able to fully regulate congestion because 

of the problems of overflow, worldwide synchronization, 

lockout, and bias against busty traffic (Karmeshu et al., 

2017). The AQM active queue technique was introduced 

to address the difficulties with the tail-drop technique that 

were noted, enabling internet routers to appropriately 

regulate lengths of queues, reduce queuing latency, and 

avoid global synchronization (Karmeshu et al., 2017). 

Once the queue is filled, active queue management tries 

to make better use of the queue by giving the sources 

feedback to reduce the speed at which they are sending 

and the speed at which new packets are sent to the queue 

(Feng et al., 2014). 

One popular active queue management method that is 

frequently used in modern routers is the RED Random 

Early Detection Algorithm (Floyd, and Jacobson, 1993) 

that prevent the gateway router's queue from filling up, 

RED handles congestion by probabilistically discarding 

every incoming packet. The greatest likelihood of a 

packet dropping (maxp), the lowest and highest thresholds 

(minth and maxth), average queue length (avg), and 

weighted factor (w) are the fundamental factors employed 

by the RED algorithm. By using the exponential 

Weighted Moving Average (EWMA), the RED algorithm 

determines the average queue length (avg) approach 

toward the current waiting time. According to the AVG, 
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packets are discarded in a probabilistic way. The packets 

will be returned with a probability of 0 when the intended 

average is less than the minimal threshold value. And 

once the average surpasses the maximum threshold value, 

the probability of dropping every incoming packet is 1. 

Nevertheless, if the calculated average is in the range of 

minth to maxth, linear deletion of packets will occur. From 

0 to maxp (Floyd, and Jacobson, 1993; and Bonald et al., 

2015). However, because it decreases at a fairly steady 

rate, the RED algorithm has several performance-related 

problems, including a high latency, limited throughput, 

and insensitivity to traffic demand. The RED algorithm's 

poor performance may be attributed to its linear drop task, 

which has a tendency also to be combative during periods 

of minimal traffic load and insufficiently combative 

during periods of high demand (Bonald, et al., 2015; 

Korolkova,  et al., 2019). 

Numerous enhanced RED variations, like Gentle RED, 

were created to alleviate RED's vulnerability (Floyd, 

2000). Double Slope in RED (Zheng, 2006). Adaptive 

RED (Floyd, et al., 2001). and Nonlinear RED (Zhou, et 

al., 2006). Random dropping combined with adaptive 

queue management (Karmeshu et al., 2017). Change 

Trend Queue Management (Tang, & Tan, 2019). 

Autonomous RED (Ho, & Lin, 2008). Cautious Adaptive 

(Tahiliani, et al., 2011). Improved Nonlinear RED (Zhang 

et al., 2012). Three Section RED (Feng, et al., 2014). 

Quadratic RED (Kumhar, et al., 2021). Quadratic 

Exponential RED (Hassan, et al., 2023). etc. No matter 

how much better things get, variations in traffic volume 

will always have a detrimental effect on the effectiveness 

of congestion control. 

A recent RED variation called Self-Adaptive Random 

Early Detection (SARED) shown in Adamu, et al. (2021) 

in an attempt toward tackle the self-adaptive issue with 

RED and its replacement plans. The proposed SARED 

contains several drop patterns (Adamu, et al., 2021). for a 

range of load scenarios. Unlike earlier RED-enhanced 

versions, SARED automatically modifies the maximum 

dropping probability and an appropriate drop pattern to 

provide the best performance while also taking the current 

load conditions into consideration. SARED functions 

effectively regardless of the load condition, according to 

outcomes from Adamu,  et al. (2021). SARED works 

effectively in low, moderate, and high load scenarios; 

nevertheless, it will cause an increase in average queuing 

latency for networks that experience continuous high load 

circumstances. 

In this work, a Priority-Based Self-Adaptive Random 

Early Detection (PSARED) algorithm is utilized, a 

distinctive technique that utilizes two queues to 

distinguish between higher and lower priority traffic and 

reduce the network traffic load of the IoT gateways. In the 

PSARED algorithm, each queue processes data packets 

using a SARED routing pattern. There are other factors, 

besides queue priority, that affect how long packets take 

to process. High-priority packets may always be 

processed first, leaving low-priority packets to languish 

in a queue unprocessed for a lengthy period, perhaps 

leading to starvation. To solve this problem, PSARED 

takes into account the time that has passed between the 

packets to establish their overall priority. A packet's 

elapsed time is the amount of time that has passed 

between when it was created on the IoT device and the 

present. Packets with high priorities are always processed 

before packets with low priorities, for the purpose of 

increasing throughput and reducing the delay of life-

critical data in emergency situations. 

 

Related Work 

The Random Early Detection (RED) algorithm was 

recommended by Van Jacobson and Sally Floyd. (1993) 

is so far the most popularly known AQM algorithm for 

controlling network congestion. 

The RED algorithm, which controls the average queue 

length, consists of two sub-algorithms. The average 

queue length must be computed in the initial segment of 

the algorithm in order to prevent bias against busty traffic. 

For every new packet that reaches at the gateway, the 

average queue length is considered by RED (i.e., the 

typical quantity of packets in the router buffer) by a little 

filter with Exponential Weighted Moving Average 

(EWMA) (equation 2), and after the queue is unfilled, avg 

is calculated by calculating the potential figure of little 

packets that were transmitted in that vacant period of time 

(equation 1) (Floyd and Jacobson, 1993). 

𝑎𝑣𝑔 = (1 − 𝑤𝑞)
𝑚

× 𝑎𝑣𝑔′   (1) 

𝑎𝑣𝑔 = ((1 − 𝑤𝑞) × 𝑎𝑣𝑔′) + (𝑤𝑞 × 𝑞)  (2) 

Where 𝑞the current queue size; 𝑎𝑣𝑔′; is the earlier 

determined average queue length and 𝑤𝑞 is a weight 

factor that has already been established. 

The second part of the method begins marking packets at 

random once the average falls among the minth and maxth, 

preventing global synchronization. If the intended 

average queue length is discovered to be inferior 

compared to the (𝑚𝑖𝑛𝑡ℎ ), at that time the packet is 

released through probability 0 (that is, acceptable into the 

router’s buffer). If it turns out that the computed average 

queue size is more than the (𝑚𝑎𝑥𝑡ℎ ), then there is a 

probability of 1 dropping the packet. Though, if the 

average queues size is initiate to be a significance among 

the (𝑚𝑖𝑛𝑡ℎ) and (𝑚𝑎𝑥𝑡ℎ ), then the packet is dropped 

linearly from 0 to 𝑚𝑎𝑥𝑝 with possibility as shown in 

(equation (3) 

𝑝𝑏 = 𝑚𝑎𝑥𝑝(
𝑎𝑣𝑔−𝑚𝑖𝑛𝑡ℎ

𝑚𝑎𝑥𝑡ℎ−𝑚𝑖𝑛𝑡ℎ
)   (3) 

Where 𝑝𝑏  is the likelihood of the first packet dropping 

and 𝑚𝑎𝑥𝑝 is the maximum drop probability. Thus, 

𝑝𝑎 = 𝑚𝑎𝑥𝑝(
𝑝𝑏

1−𝑐𝑜𝑢𝑛𝑡*𝑝𝑏
)    (4) 

Where 𝑝𝑎 is the likelihood of a last packet falling as 

presented in (equation (4)) and amount is the sum of 
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reached packets since the last released. Consequently, the 

dropping function 𝑝𝑑(𝑎𝑣𝑔) of RED can be articulated in 

(equation (5) 
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Even if evidence has demonstrated the RED algorithm 

performs noticeably superior to the tail drop technique, 

studies have disclosed that RED has several 

disadvantages, such as Problems of parameterization (i.e., 

RED parameters must be continuously adjusted to get 

better performance), limited throughput, large delays, and 

the absence of a self-adaptation strategy (Patel, 2013; 

Misra et al., 2000; Plasser et al., 2010; and Floyd, 2000). 

According to a study by Floyd (2000). All incoming 

packets in RED are released when the computed average 

rate exceeds the maximum threshold. Since RED is 

thought to be overly aggressive in this situation, low 

throughput will result from RED's drop tendency. Floyd 

thus suggested Gentle Red (GRED) as a solution to this 

issue. A second queue threshold, 2maxth, is added to 

GRED after maxth. In the event that the measured average 

falls between maxth and 2maxth, the likelihood of 

dropping packets rises linearly between maxp and 1. 

Consequently, it is more sympathetic than RED. While 

average exceeds maxth 

However, Traffic-Adaptive Priority-based MAC (TAP-

MAC) designed an adaptable superstructure to give the 

nodes the best channel access for both routine and 

emergency data. (Henna et al., 2017). There are two 

categories for the channel access period (CAP): CAP1 

should only be used in cases of urgency, while CAP2 is 

available for both normal and emergency traffic. TAP-

MAC enhances the possibility that emergency traffic will 

be able to access the channel since it would have lower 

argument space standards because low-priority traffic 

shares a portion of CAP. Even in situations where 

emergency traffic is present, nodes with lower-priority 

data may still be able to win the channel. Moreover, no 

technique has been put out to halt the transmission of the 

usual traffic. 

Furthermore, Zheng, (2006). Suggested double-slope 

RED (DS-RED) and saw limited throughput as a 

significant RED restriction. To outperform RED, DS-

RED employs two distinct drop probability distributions. 

The suggested DS-RED modifies the drop function's 

slope in response to the degree of network congestion. As 

the queue length rises over a certain point, DS-RED 

dumps packets far more forcefully than RED. However, 

because each of their linear drop functions is specified 

with distinct slopes, DS-RED functions very similarly to 

GRED (Floyd, 2000), Given that DS-RED relies on linear 

drop functions, parameterization remains a challenge; it 

inherited the aggressiveness of RED. 

Additionally, a modified version of RED known as 

Nonlinear RED (NLRED) developed by (Zhou et al. 

2006). This version retains all other characteristics of 

RED except for replacing the nonlinear quadratic drop 

function with the linear drop function shown in RED. 

According to their theory, NLRED is more aggressive 

under big traffic loads but kinder than RED under modest 

traffic loads because of its function for nonlinear packet 

loss. Consequently, when there is little traffic, instead of 

having the router operate in a single average queue size, 

NLRED encourages it to run in a range. In situations 

when there is a high volume of traffic and the normal 

queue size is close to the maximum threshold (maxth), 

NLRED permits more aggressive packet dropping to 

rapidly decrease. Nevertheless, when there are 

exceptionally high loads, NLRED may result in force loss 

and congestion. 

An Improved Nonlinear RED, or INRED, was offered by 

Zhang et al. (2012). As a solution to the Nonlinear RED 

(NRED) problem. While the average is among the minth 

and maxth, INRED employs a nonlinear drop function, in 

contrast to nonlinear red (NRED). However, when the 

average is between the maxth and 2maxth, like in GRED, 

the drop probability grows linearly to the maximum of 1. 

Even in situations of extreme congestion, Zhang et al. 

found that the INRED simulation results outperform 

GRED and NRED in terms of performance. In essence, 

INRED is viewed as a better NRED and GRED variant. 

In research carried out by Akshatha and Vedananda 

(2018). Suggested a revised RED algorithm called Hybrid 

Modified Random Early Detection (HMRED) to 

overcome the problems of traditional RED, for example, 

poor throughput and excessive packet loss. HMDRED 

uses Modified Gaussian Function (MGF) drop 

probability to reduce packet drop. The simulation results 

have shown that HMDRED provides better throughput 

and packet drop compared to the RED algorithm. 

Nevertheless, the dropping approach that was first 

implemented in poor connection usage results from 

HMDRED's extreme aggression. 

To overcome the problems of RED and enhance network 

performance, Abu-Shareha (2019). suggested Enhanced 

Random Early Detection (ERED) and Time-window 

Augmented RED (Windowed-RED). The results 

obtained revealed that the proposed algorithms improve 

the slow reaction time problem of the traditional RED 

algorithm. However, ERED and Window-RED inherit 

many problems of the original RED algorithm, and when 

implemented in IoT gateways, they will lead to long 

queuing delays and high packet loss rates. 

The self-adaptive problem with RED-based AQM 

schemes is addressed by an improved RED scheme that 

was put out in Adamu et al. (2021). The self-adaptive 

approach in Adamu et al. (2021) adjusts an appropriate 



A Priority-Based Self-Adaptive…  Sada et al. JOBASR2024 2(1): 18-27 

Journal of Basics and Applied Sciences Research  Volume 2(1) 21 

drop pattern and maximum dropping chance based on the 

average queue length and the current traffic load in order 

to achieve the required presentation level. For the purpose 

of greatly enhancing the SARED technique's 

performance under high loads, this study proposes an 

exponential variation. 

 

MATERIALS AND METHODS 

Priority-Based Self-Adaptive Random Early 

Detection Algorithms 

Several studies have shown that in network with 

continuous fluctuating traffic loads. Both the original 

RED and several of its enhanced versions fall short of 

providing the necessary performance; however, clearly, 

in networks the stream of traffic loads is unstable, and as 

such, SARED recommended and AQM algorithm that 

resulted in improved performance regardless of the traffic 

load fluctuations. The SARED algorithms uses the 

computed average queue length (avg) and network traffic 

loads congestion displays built on which packet dropping 

possibilities are clear, However, SARED uses only a 

single queue as such, it cannot differentiate between 

higher-priority traffic(e.g emergency or life-critical) and 

lower priority traffic(e.g normal data). 

This study proposes a Priority-Based Self Adaptive 

Random Early Detection (PSARED) algorithm, a single 

scheme that employs two queues to differentiate between 

higher and lower priority traffic and reduce the network 

traffic load of the IoT gateways. Higher priority data 

packets must be transmitted as quickly as possible. In 

PSARED algorithm, as shown in Fig. 1, each queue 

processes data packets using the SARED routing strategy 

since it can lead to higher performance regardless of how 

changes in traffic load occur. Packet processing times are 

influenced by factors other than queue priority. If high-

priority packets are always treated sooner, low-priority 

packets could be left in a queue and never processed by 

the IoT gateway, leading to starvation. To solve this 

problem, PSARED considers the packets’ elapsed time in 

order to control the complete priority of the packets. A 

packet's elapsed time is the amount of time that has passed 

between when it was created in the IoT device and the 

present. Packets with high priorities are always processed 

before packets with low priority, help boost throughput 

and shorten the delay of vital information during 

emergencies.

 

 
Figure 1: PSARED Queue Model 

 

In PSARED, the lapsed time for a packet 𝑡𝑒 is the time 

intermission among the creation of the packet from the 

sensor node 𝑡𝑐 and the present time 𝑡 as presented in 

equation 6. 

𝑡𝑒   =  𝑡 − 𝑡𝑐      (6) 

Similarly, 𝑃𝑟(𝑡) shows the significance of the packet 

priority at time t and the overall priority of the packet 

𝑃𝑖(𝑡) located at IoT gateway i is calculated using equation 

(7). 

𝑃𝑖(𝑡)  =  (𝛽1 × 𝑃𝑟(𝑡))  + (𝛽2 × 𝑡𝑒)    (7) 

Where 𝛽1 and 𝛽2 reflect weighing considerations that 

have a direct impact on Making decisions Each weight 

component should have a value between zero and one, 

and the total of the weights assigned should not be greater 

than one. In other words, 𝛽1 + 𝛽2  =  1, 𝛽1, 𝛽2 ∈ [0,1]. In 

a queue, each packet has the same priority. Furthermore, 

Each queue uses the SARED algorithm to holder every 

packet. Consequently, A comparison of the front packets 

in each queue is required to ascertain the packets' total 

priority and transmission priority. 

Similar to the SARED algorithm, in the proposed 

PSARED algorithm, two congestion indicators are used 

for active queue management, i.e. average queue length 

(avg) and the current network’s traffic load state, based 

on these indicators, a drop pattern is adapted to ensure 

good and stable performance regardless of load state. To 

determine the traffic load status of the network, the flow 

rate from each active IoT device is actively monitored. 

Let 𝜆𝑛(𝑡) be data flow rate from nth source, n = 1, when 

N is the total number of IoT devices in use at a given 

moment (t). The following formula provides the overall 

data arrival rate at the IoT gateway at time t: (8). 

𝜆(𝑡) = ∑ 𝜆𝑛𝑁
𝑛=1 (𝑡)     (8) 

If µ represents the bottleneck link's bandwidth, then the 

traffic load at time t may be found using equation (9). 

𝜌(𝑡) =
𝜆(𝑡)

𝜇
      (9) 
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If 𝜌(𝑡) < 1 , then there is little traffic regarding the 

bottleneck connection, Consequently, packets won't 

gather in the row, If the situation is retained long period 

of time, then establish a link underutilization will follow. 

If 𝜌(𝑡) ≈ 1, thus, the volume of traffic is sensible 

regarding the bottleneck connection , henceforth 

presentation is ideal. But still, if thus, the volume of 

traffic is high regarding the bottleneck connection, as 

packets accumulation in the queue, they’ll hold off on 

being transmitted, Long-term maintenance of this 

condition might probably result in congestion and 

overflow. PSARED familiarizes its drop level built on the 

detected𝜌(𝑡), for high load, PSARED operates 

aggressively in a linear manner to prevent force drop and 

congestion, notwithstanding for light to moderate loads, 

PSARED works moderate mode, where its nonlinearity 

depend on the detected value of𝜌(𝑡). 
In PSARED maximum drop probability maxp is described 

as a result of the observed load 𝜌 (i.e. high maxp for high 

load and low maxp for light load) and average queue 

length (avg) is calculated by the Exponential Weighted 

Moving Average (EWMA) (equation (2.1)). If avg < 

minth, then no packet will be released and if avg ≥ maxth 

all the arriving packets will be dropped with probability 

1. But still, if minth  ≤ avg < maxth, then packet releasing 

possibility increases linearly or nonlinearly (based on the 

observed𝜌(𝑡)) from 0 to the present maxp. PSARED drop 

function is obtainable in equation (10). 

𝑝𝑃𝑆𝐴𝑅𝐸𝐷 =

{

0, 𝑎𝑣𝑔 < 𝑚𝑖𝑛𝑡ℎ

(
𝑎𝑣𝑔−𝑚𝑖𝑛𝑡ℎ

𝑚𝑎𝑥𝑡ℎ−𝑚𝑖𝑛𝑡ℎ
)

𝑖

𝑚𝑎𝑥𝑝, 𝑚𝑖𝑛𝑡ℎ ≤ 𝑎𝑣𝑔 < 𝑚𝑎𝑥𝑡ℎ

1, 𝑎𝑣𝑔 ≥ 𝑚𝑎𝑥𝑡ℎ

 

    (10)

 

𝑖 = 𝑘
1

𝜌(𝑡), 𝑘 ≥ 2    (11)
 

  

Essentially, PSARED adjusts its maxp based on present 

weight (high maxp for high load, moderate maxp for 

moderate load, and low maxp for light load), furthermore 

in PSARED once avg drops in minth and maxth, a function 

of drops whose exponent is also a function of load is 

defined and it increases linearly or nonlinearly from 0 to 

the present maxp. Then, the exponent of PSARED’s drop 

gathering is a function of load, as such its amount of 

nonlinearity depend also going on current load, i.e. its 

degree of nonlinearity increases as load decreases (its 

slope decreases) and decreases as load increases. 

Subsequently, Based on load situation, PSARED can 

work in two modes, linear and nonlinear modes. It works 

in nonlinear (moderate) mode for light to pacify load and 

changes to linear. These attributes of PSARED make it 

self-adaptive so that a variety of loads may be handled 

with ease.

 

The pseudo code of the PSARED Queuing algorithm 

Algorithm 1: PSARED QUEUING ALGORITHM 

1. Input: minth, maxth, w, k, µ, 

2. Output: count 

3. Initialization: 

4. avg ← 0 

5. count ← -1 

6. for all source nodes do 

7. Return λ(t) [Mbps] (equation 8) 

8. ρ(t) ← λ(t)/µ (equation 9) 

9. i ← k1/ρ(t) (equation 11) 

10. maxp ← 1- e-ρ(t) 

11. end for 

12. for each packet arrival do 

13. Calculate the average queue size: avg 

14. if the queue is nonempty then 

15. avg ← (1 – w) ×avg' + w × q(t) 

16. else 

17. m ← f (t – tqueue_idle_time) 

18. avg ← ((1 – w)m × avg') 

19. end if 

20. Determine packet discard 

21. if avg < minth then 

22. No packet drop 

23. Set count   ← -1 

24. else if minth ≤ avg < maxth then 

25. Set count ← count + 1 
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26. Calculate the packet drop probability Pb 

27. Pb ← ((avg - minth) / (maxth - minth))i × maxp 

28. Pa ← Pb / (1 – count . Pb) 

29. Mark the arriving packet with probability Pa 

30. Set count ← 0 

31. Drop the packet 

32. else if maxth ≤ avg then 

33. Drop the arriving packet 

34. Set count ← 0 

35. else count ← -1 

36. When the router’s queue becomes empty 

37. Set tqueue_idle_time ← t 

38. end if 

39. end for 

 

The pseudo code of the PSARED scheduling algorithm. 

Algorithm 2: PSARED SCHEDULING ALGORITHM 

1. Input: 𝛽1, 𝛽2,𝑡𝑐1, 𝑡𝑐2 

2. Output: 𝑃𝑖(𝑡) 

3. Initialization: 

4. //Compute the overall priority of the front packet in the Highest Priority Queue (𝑄1) 

5. Return 𝑃𝑟1(𝑡)      //Priority value of the front packet of 𝑄1 

6. 𝑡𝑒1   =  𝑡 − 𝑡𝑐1 

7. 𝑃1(𝑡)  =  (𝛽1 × 𝑃𝑟1(𝑡))  + (𝛽2 × 𝑡𝑒1) 

8. //Compute the overall priority of the front packet in the Lowest Priority Queue (𝑄2) 

9. Return 𝑃𝑟2(𝑡)      //Priority value of the front packet of 𝑄2 

10. 𝑡𝑒2   =  𝑡 −  𝑡𝑐2 

11. 𝑃2(𝑡)  =  (𝛽1 × 𝑃𝑟2(𝑡))  + (𝛽2 × 𝑡𝑒2) 

12. If ( 𝑃1(𝑡) > 𝑃2(𝑡) ) then 

13. return  𝑃1(𝑡) 

14. else 

15. return  𝑃2(𝑡) 

 

Table 1: PSARED Algorithms Parameter 

Saved Variable Fixed Parameter Other 

avg present average queue length w: queue weight t: present time 

avg': considered earlier average 

queue length 

minth: minimum threshold for the 

queue 

λ(t): current total incoming traffic 

load (Mbps) 

tqueue_idle_time: start of the queue idle 

time 

maxth: maximum threshold for the 

queue 

ρ: present bottleneck traffic load 

count: packets since last marked 

packets 

Δ: queue’s middle 

Threshold 

q(t): current queue length 

maxp: current maximum drop 

probability 

µ: bottleneck connection 

size (Mbps) 

f(t): a linear gathering of the time t 

i: proponent of the nonlinear drop 

function 

 pb: temporary probability used in the 

calculation 

k: advocate for nonlinear drop 

functions 

 pa: Present packet-marking 

likelihood 

 

RESULTS AND DISCUSSION 

Simulation studies were carried out to verify the efficacy 

of the suggested PSARED algorithm. The NS-2.35 

simulator on Ubuntu 18.04 LTS was used for the 

simulation studies, which used the network topology 

shown in Figure 2.
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Figure 2: Topology for Simulation 

 

The two IoT gateways make up the topology The 

bottleneck that connects A and B and owned by N TCP 

source nodes. The bottleneck link can support up to 10 

Mbps and a broadcast delay of 20 ms. Through 

connections, the network's hosts are connected to the IoT 

gateways. (Each has the ability to support 10 Mbps), and 

their broadcast delays are 10 ms. 

The simulation produced various load levels by altering 

the value of N, which ranged from 5 to 95 TCP source 

nodes. An active queue management algorithm is applied 

at IoT gateway A, whose capacity for a queue is 140 

packets. The packet size generated by sources is 512 

bytes. An updated Reno TCP setup is used. When a 

network has a specific quantity of TCP source nodes, a 

200-s simulation is conducted, and the mean value of the 

network’s parameter is obtained. For computation of the 

traffic load (ρ), the present figure amount arriving in line 

λ(t) is acquired from the object that monitors queues. For 

the presentation study, the input factors that were 

employed were minth = 20, maxth = 120, where wq = 

0.002,  = 0.75, and k = 2. SARED and the suggested 

PSARED performance were compared.

 

 
Figure 3: Throughput vs. number of node 

 

Based on the simulation experiments conducted and the 

analysis of throughput as seen in Figure 3, Show that even 

with low loads, PSARED reduces throughput; 

nevertheless, in moderate and high load situations, the 

throughput of both PSARED and SARED reached the 

maximum limit. The results show that PSARED 

establishes a critical and non-critical discipline that 

enables the server to send high-priority packets at the 

head of the queue. In a similar vein, the discretion rule 

ensures that, during their non-critical intervals, high-

priority packets do not obstruct the delivery of low-

priority packets. Consequently, the sum of all of packets 

received increased massively by exploiting the critical 

and non-critical packet data.  On the other hand, 

compared to the SARED, the PSARED performs better.
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Figure 4: Delay vs. Numbers of flow 

 

The graph in Figure 6 illustrates the delay of PSARED 

and SARED. The amount of time that passes between 

when an application in the leaf nodes generates a packet 

and when it reaches the IoT gateways is known as the 

average delay. For time-sensitive applications, it is more 

crucial to calculate the average delay of the high-priority 

packet in the PSARED. The average delays of the 

PSARED and SARED are shown in Figure 4. The 

PSARED has a lower average delay than the SARED. 

The explanation for this is that high-priority packets are 

sent directly to take the lead in the queue as they arrive at 

the link server in the PSARED and are instantly 

categorized based on that information. Additionally, 

high-priority packets are referred unavailable of the link 

server, while low-priority packets wait in the queue if the 

discretion rule is met.

 

Figure 5: Packet loss rate vs. number of flows 
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Figure 5 displays a graph of the packet loss rate. The 

graph shows that when there is a high load, PSARED's 

packet loss rate is significantly lower than SARED's. The 

issue is attributed to the heavy load; the average queue 

length of SARED approached the maxth. PSARED's 

packet loss is primarily due to its drop policy, while 

SARED's loss can result from its drop policy or force 

drop. 

 

CONCLUSION 

A priority-base congestion control algorithms (PSARED) 

was develop in this paper. In contrast to RED and certain 

upgraded versions with drop patterns that are static. 

PSARED differentiates between critical and non-critical 

data packets in IoT gateways so as to prevent packet 

collision and congestion. PSARED improves the 

performance of SARED in relations of throughput, end to 

end delay and packet loss rate when both critical and non-

critical data packets are present. Later, we will look into 

PSARED, which is suggested for further investigation 

and uses a machine learning model to classify critical and 

non-critical data packets. 
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