
 18 How to cite this article: Sada, A. N., Olanrewaju, O. M., & Surajo, Y. (2024). A Priority-Based Self-Adaptive Random Early
Detection Algorithm in IoT Gateways. Journal of Basics and Applied Sciences Research, 2(1), 18–27. https://doi.org/10.33003/jobasr-
2024-v2i1-13

A Priority-Based Self-Adaptive Random Early Detection Algorithm in IoT Gateways

Abdulrahman Nasiru Sada*, Oyenike Mary Olanrewaju, Yusuf Surajo

Computer Science Department, Federal University Dutsin-ma, Katsina, Nigeria

*Corresponding Author Email: nasirabdulrahman182@gmail.com

Keywords:

Congestion,

AQM,

RED,

SARED,

PSARED.

ABSTRACT

Effective algorithms for queue management are crucial in place of guaranteeing

maximum efficiency in gateway routers since network traffic continues to expand

dramatically. An online researcher has suggested the Active Queue Management

(AQM) strategy regarding the upcoming generation of gateway switches. The

common active queue scheme remains (RED) Random Early Detection. Random

early detection is susceptible to parameterization issues and lacks a self-

adaptation mechanism. Several RED variants have been formed; nevertheless,

variations in traffic load have an adverse effect on all of them. Due to the fact that

each has a static drop pattern, to address the RED and its variation schemes, the

SARED system, or the design of self-adaptive random early detection was

created. But in order to prevent congestion, during the time when the queue length

surpasses a present maximum threshold limit, SARED aggressively removes

packets. This causes networks having a lot of traffic situations the average is

expected to increase queue delay, so in those cases, SARED should be less

aggressive. This paper develops a priority-based queuing congestion control

method for IoT gateways to manage network congestion. Our method (priority-

based algorithms) performs substantially better with regard to throughput, delay,

and packet loss than the present methods of SARED. The outcomes of the

conducted simulation experiments have shown that in scenarios with heavy traffic

loads, priority-based self-adaptive random early detection (PSARED) has greatly

decreased average queuing delay by 3%, minimized average throughput by 1%,

and decreased the rate of packet loss by 10% in contrast to SARED.

INTRODUCTION

The increasing demand for fast data transfer and the quick

growth of network traffic present formidable obstacles

regarding gateway routers in terms of effectively are

controlling their queues to guarantee dependable and

seamless net functionality (Karmanje et al., 2023; Atzori

et al., 2010; & Varghese et al., 2017). By regulating

packet transmission and averting network congestion,

queue management algorithms contribute significantly to

the upkeep of ideal gateway router performance (Floyd,

& Jacobson, 1993; Jain, 1990). In order to prevent

congestion, gateway routers have historically employed

the tail-drop queue management technique. When a tail-

drop method is used to fill a queue that is full, some

packets are discarded till there is sufficient room in queue

for new traffic flow (Adamu et al., 2021). Nevertheless,

Tail Drop is not able to fully regulate congestion because

of the problems of overflow, worldwide synchronization,

lockout, and bias against busty traffic (Karmeshu et al.,

2017). The AQM active queue technique was introduced

to address the difficulties with the tail-drop technique that

were noted, enabling internet routers to appropriately

regulate lengths of queues, reduce queuing latency, and

avoid global synchronization (Karmeshu et al., 2017).

Once the queue is filled, active queue management tries

to make better use of the queue by giving the sources

feedback to reduce the speed at which they are sending

and the speed at which new packets are sent to the queue

(Feng et al., 2014).

One popular active queue management method that is

frequently used in modern routers is the RED Random

Early Detection Algorithm (Floyd, and Jacobson, 1993)

that prevent the gateway router's queue from filling up,

RED handles congestion by probabilistically discarding

every incoming packet. The greatest likelihood of a

packet dropping (maxp), the lowest and highest thresholds

(minth and maxth), average queue length (avg), and

weighted factor (w) are the fundamental factors employed

by the RED algorithm. By using the exponential

Weighted Moving Average (EWMA), the RED algorithm

determines the average queue length (avg) approach

toward the current waiting time. According to the AVG,

Journal of Basics and Applied Sciences Research (JOBASR)
ISSN print: 3026-9091

Volume 2(1) March 2024
DOI: https://doi.org/10.33003/jobasr-2024-v2i1-13

mailto:nasirabdulrahman182@gmail.com
https://doi.org/10.33003/jobasr-2024-v2i1-13

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 19

packets are discarded in a probabilistic way. The packets

will be returned with a probability of 0 when the intended

average is less than the minimal threshold value. And

once the average surpasses the maximum threshold value,

the probability of dropping every incoming packet is 1.

Nevertheless, if the calculated average is in the range of

minth to maxth, linear deletion of packets will occur. From

0 to maxp (Floyd, and Jacobson, 1993; and Bonald et al.,

2015). However, because it decreases at a fairly steady

rate, the RED algorithm has several performance-related

problems, including a high latency, limited throughput,

and insensitivity to traffic demand. The RED algorithm's

poor performance may be attributed to its linear drop task,

which has a tendency also to be combative during periods

of minimal traffic load and insufficiently combative

during periods of high demand (Bonald, et al., 2015;

Korolkova, et al., 2019).

Numerous enhanced RED variations, like Gentle RED,

were created to alleviate RED's vulnerability (Floyd,

2000). Double Slope in RED (Zheng, 2006). Adaptive

RED (Floyd, et al., 2001). and Nonlinear RED (Zhou, et

al., 2006). Random dropping combined with adaptive

queue management (Karmeshu et al., 2017). Change

Trend Queue Management (Tang, & Tan, 2019).

Autonomous RED (Ho, & Lin, 2008). Cautious Adaptive

(Tahiliani, et al., 2011). Improved Nonlinear RED (Zhang

et al., 2012). Three Section RED (Feng, et al., 2014).

Quadratic RED (Kumhar, et al., 2021). Quadratic

Exponential RED (Hassan, et al., 2023). etc. No matter

how much better things get, variations in traffic volume

will always have a detrimental effect on the effectiveness

of congestion control.

A recent RED variation called Self-Adaptive Random

Early Detection (SARED) shown in Adamu, et al. (2021)

in an attempt toward tackle the self-adaptive issue with

RED and its replacement plans. The proposed SARED

contains several drop patterns (Adamu, et al., 2021). for a

range of load scenarios. Unlike earlier RED-enhanced

versions, SARED automatically modifies the maximum

dropping probability and an appropriate drop pattern to

provide the best performance while also taking the current

load conditions into consideration. SARED functions

effectively regardless of the load condition, according to

outcomes from Adamu, et al. (2021). SARED works

effectively in low, moderate, and high load scenarios;

nevertheless, it will cause an increase in average queuing

latency for networks that experience continuous high load

circumstances.

In this work, a Priority-Based Self-Adaptive Random

Early Detection (PSARED) algorithm is utilized, a

distinctive technique that utilizes two queues to

distinguish between higher and lower priority traffic and

reduce the network traffic load of the IoT gateways. In the

PSARED algorithm, each queue processes data packets

using a SARED routing pattern. There are other factors,

besides queue priority, that affect how long packets take

to process. High-priority packets may always be

processed first, leaving low-priority packets to languish

in a queue unprocessed for a lengthy period, perhaps

leading to starvation. To solve this problem, PSARED

takes into account the time that has passed between the

packets to establish their overall priority. A packet's

elapsed time is the amount of time that has passed

between when it was created on the IoT device and the

present. Packets with high priorities are always processed

before packets with low priorities, for the purpose of

increasing throughput and reducing the delay of life-

critical data in emergency situations.

Related Work

The Random Early Detection (RED) algorithm was

recommended by Van Jacobson and Sally Floyd. (1993)

is so far the most popularly known AQM algorithm for

controlling network congestion.

The RED algorithm, which controls the average queue

length, consists of two sub-algorithms. The average

queue length must be computed in the initial segment of

the algorithm in order to prevent bias against busty traffic.

For every new packet that reaches at the gateway, the

average queue length is considered by RED (i.e., the

typical quantity of packets in the router buffer) by a little

filter with Exponential Weighted Moving Average

(EWMA) (equation 2), and after the queue is unfilled, avg

is calculated by calculating the potential figure of little

packets that were transmitted in that vacant period of time

(equation 1) (Floyd and Jacobson, 1993).

𝑎𝑣𝑔 = (1 − 𝑤𝑞)
𝑚

× 𝑎𝑣𝑔′ (1)

𝑎𝑣𝑔 = ((1 − 𝑤𝑞) × 𝑎𝑣𝑔′) + (𝑤𝑞 × 𝑞) (2)

Where 𝑞the current queue size; 𝑎𝑣𝑔′; is the earlier

determined average queue length and 𝑤𝑞 is a weight

factor that has already been established.

The second part of the method begins marking packets at

random once the average falls among the minth and maxth,

preventing global synchronization. If the intended

average queue length is discovered to be inferior

compared to the (𝑚𝑖𝑛𝑡ℎ), at that time the packet is

released through probability 0 (that is, acceptable into the

router’s buffer). If it turns out that the computed average

queue size is more than the (𝑚𝑎𝑥𝑡ℎ), then there is a

probability of 1 dropping the packet. Though, if the

average queues size is initiate to be a significance among

the (𝑚𝑖𝑛𝑡ℎ) and (𝑚𝑎𝑥𝑡ℎ), then the packet is dropped

linearly from 0 to 𝑚𝑎𝑥𝑝 with possibility as shown in

(equation (3)

𝑝𝑏 = 𝑚𝑎𝑥𝑝(
𝑎𝑣𝑔−𝑚𝑖𝑛𝑡ℎ

𝑚𝑎𝑥𝑡ℎ−𝑚𝑖𝑛𝑡ℎ
) (3)

Where 𝑝𝑏 is the likelihood of the first packet dropping

and 𝑚𝑎𝑥𝑝 is the maximum drop probability. Thus,

𝑝𝑎 = 𝑚𝑎𝑥𝑝(
𝑝𝑏

1−𝑐𝑜𝑢𝑛𝑡*𝑝𝑏
) (4)

Where 𝑝𝑎 is the likelihood of a last packet falling as

presented in (equation (4)) and amount is the sum of

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 20

reached packets since the last released. Consequently, the

dropping function 𝑝𝑑(𝑎𝑣𝑔) of RED can be articulated in

(equation (5)

0, min

min
() max , min max

max min

1, max

th

th
pd th th

th th

th

p

avg

avg
avg avg

avg

•

−
=

−

 (5)

Even if evidence has demonstrated the RED algorithm

performs noticeably superior to the tail drop technique,

studies have disclosed that RED has several

disadvantages, such as Problems of parameterization (i.e.,

RED parameters must be continuously adjusted to get

better performance), limited throughput, large delays, and

the absence of a self-adaptation strategy (Patel, 2013;

Misra et al., 2000; Plasser et al., 2010; and Floyd, 2000).

According to a study by Floyd (2000). All incoming

packets in RED are released when the computed average

rate exceeds the maximum threshold. Since RED is

thought to be overly aggressive in this situation, low

throughput will result from RED's drop tendency. Floyd

thus suggested Gentle Red (GRED) as a solution to this

issue. A second queue threshold, 2maxth, is added to

GRED after maxth. In the event that the measured average

falls between maxth and 2maxth, the likelihood of

dropping packets rises linearly between maxp and 1.

Consequently, it is more sympathetic than RED. While

average exceeds maxth

However, Traffic-Adaptive Priority-based MAC (TAP-

MAC) designed an adaptable superstructure to give the

nodes the best channel access for both routine and

emergency data. (Henna et al., 2017). There are two

categories for the channel access period (CAP): CAP1

should only be used in cases of urgency, while CAP2 is

available for both normal and emergency traffic. TAP-

MAC enhances the possibility that emergency traffic will

be able to access the channel since it would have lower

argument space standards because low-priority traffic

shares a portion of CAP. Even in situations where

emergency traffic is present, nodes with lower-priority

data may still be able to win the channel. Moreover, no

technique has been put out to halt the transmission of the

usual traffic.

Furthermore, Zheng, (2006). Suggested double-slope

RED (DS-RED) and saw limited throughput as a

significant RED restriction. To outperform RED, DS-

RED employs two distinct drop probability distributions.

The suggested DS-RED modifies the drop function's

slope in response to the degree of network congestion. As

the queue length rises over a certain point, DS-RED

dumps packets far more forcefully than RED. However,

because each of their linear drop functions is specified

with distinct slopes, DS-RED functions very similarly to

GRED (Floyd, 2000), Given that DS-RED relies on linear

drop functions, parameterization remains a challenge; it

inherited the aggressiveness of RED.

Additionally, a modified version of RED known as

Nonlinear RED (NLRED) developed by (Zhou et al.

2006). This version retains all other characteristics of

RED except for replacing the nonlinear quadratic drop

function with the linear drop function shown in RED.

According to their theory, NLRED is more aggressive

under big traffic loads but kinder than RED under modest

traffic loads because of its function for nonlinear packet

loss. Consequently, when there is little traffic, instead of

having the router operate in a single average queue size,

NLRED encourages it to run in a range. In situations

when there is a high volume of traffic and the normal

queue size is close to the maximum threshold (maxth),

NLRED permits more aggressive packet dropping to

rapidly decrease. Nevertheless, when there are

exceptionally high loads, NLRED may result in force loss

and congestion.

An Improved Nonlinear RED, or INRED, was offered by

Zhang et al. (2012). As a solution to the Nonlinear RED

(NRED) problem. While the average is among the minth

and maxth, INRED employs a nonlinear drop function, in

contrast to nonlinear red (NRED). However, when the

average is between the maxth and 2maxth, like in GRED,

the drop probability grows linearly to the maximum of 1.

Even in situations of extreme congestion, Zhang et al.

found that the INRED simulation results outperform

GRED and NRED in terms of performance. In essence,

INRED is viewed as a better NRED and GRED variant.

In research carried out by Akshatha and Vedananda

(2018). Suggested a revised RED algorithm called Hybrid

Modified Random Early Detection (HMRED) to

overcome the problems of traditional RED, for example,

poor throughput and excessive packet loss. HMDRED

uses Modified Gaussian Function (MGF) drop

probability to reduce packet drop. The simulation results

have shown that HMDRED provides better throughput

and packet drop compared to the RED algorithm.

Nevertheless, the dropping approach that was first

implemented in poor connection usage results from

HMDRED's extreme aggression.

To overcome the problems of RED and enhance network

performance, Abu-Shareha (2019). suggested Enhanced

Random Early Detection (ERED) and Time-window

Augmented RED (Windowed-RED). The results

obtained revealed that the proposed algorithms improve

the slow reaction time problem of the traditional RED

algorithm. However, ERED and Window-RED inherit

many problems of the original RED algorithm, and when

implemented in IoT gateways, they will lead to long

queuing delays and high packet loss rates.

The self-adaptive problem with RED-based AQM

schemes is addressed by an improved RED scheme that

was put out in Adamu et al. (2021). The self-adaptive

approach in Adamu et al. (2021) adjusts an appropriate

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 21

drop pattern and maximum dropping chance based on the

average queue length and the current traffic load in order

to achieve the required presentation level. For the purpose

of greatly enhancing the SARED technique's

performance under high loads, this study proposes an

exponential variation.

MATERIALS AND METHODS

Priority-Based Self-Adaptive Random Early

Detection Algorithms

Several studies have shown that in network with

continuous fluctuating traffic loads. Both the original

RED and several of its enhanced versions fall short of

providing the necessary performance; however, clearly,

in networks the stream of traffic loads is unstable, and as

such, SARED recommended and AQM algorithm that

resulted in improved performance regardless of the traffic

load fluctuations. The SARED algorithms uses the

computed average queue length (avg) and network traffic

loads congestion displays built on which packet dropping

possibilities are clear, However, SARED uses only a

single queue as such, it cannot differentiate between

higher-priority traffic(e.g emergency or life-critical) and

lower priority traffic(e.g normal data).

This study proposes a Priority-Based Self Adaptive

Random Early Detection (PSARED) algorithm, a single

scheme that employs two queues to differentiate between

higher and lower priority traffic and reduce the network

traffic load of the IoT gateways. Higher priority data

packets must be transmitted as quickly as possible. In

PSARED algorithm, as shown in Fig. 1, each queue

processes data packets using the SARED routing strategy

since it can lead to higher performance regardless of how

changes in traffic load occur. Packet processing times are

influenced by factors other than queue priority. If high-

priority packets are always treated sooner, low-priority

packets could be left in a queue and never processed by

the IoT gateway, leading to starvation. To solve this

problem, PSARED considers the packets’ elapsed time in

order to control the complete priority of the packets. A

packet's elapsed time is the amount of time that has passed

between when it was created in the IoT device and the

present. Packets with high priorities are always processed

before packets with low priority, help boost throughput

and shorten the delay of vital information during

emergencies.

Figure 1: PSARED Queue Model

In PSARED, the lapsed time for a packet 𝑡𝑒 is the time

intermission among the creation of the packet from the

sensor node 𝑡𝑐 and the present time 𝑡 as presented in

equation 6.

𝑡𝑒 = 𝑡 − 𝑡𝑐 (6)

Similarly, 𝑃𝑟(𝑡) shows the significance of the packet

priority at time t and the overall priority of the packet

𝑃𝑖(𝑡) located at IoT gateway i is calculated using equation

(7).

𝑃𝑖(𝑡) = (𝛽1 × 𝑃𝑟(𝑡)) + (𝛽2 × 𝑡𝑒) (7)

Where 𝛽1 and 𝛽2 reflect weighing considerations that

have a direct impact on Making decisions Each weight

component should have a value between zero and one,

and the total of the weights assigned should not be greater

than one. In other words, 𝛽1 + 𝛽2 = 1, 𝛽1, 𝛽2 ∈ [0,1]. In

a queue, each packet has the same priority. Furthermore,

Each queue uses the SARED algorithm to holder every

packet. Consequently, A comparison of the front packets

in each queue is required to ascertain the packets' total

priority and transmission priority.

Similar to the SARED algorithm, in the proposed

PSARED algorithm, two congestion indicators are used

for active queue management, i.e. average queue length

(avg) and the current network’s traffic load state, based

on these indicators, a drop pattern is adapted to ensure

good and stable performance regardless of load state. To

determine the traffic load status of the network, the flow

rate from each active IoT device is actively monitored.

Let 𝜆𝑛(𝑡) be data flow rate from nth source, n = 1, when

N is the total number of IoT devices in use at a given

moment (t). The following formula provides the overall

data arrival rate at the IoT gateway at time t: (8).

𝜆(𝑡) = ∑ 𝜆𝑛𝑁
𝑛=1 (𝑡) (8)

If µ represents the bottleneck link's bandwidth, then the

traffic load at time t may be found using equation (9).

𝜌(𝑡) =
𝜆(𝑡)

𝜇
 (9)

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 22

If 𝜌(𝑡) < 1 , then there is little traffic regarding the

bottleneck connection, Consequently, packets won't

gather in the row, If the situation is retained long period

of time, then establish a link underutilization will follow.

If 𝜌(𝑡) ≈ 1, thus, the volume of traffic is sensible

regarding the bottleneck connection , henceforth

presentation is ideal. But still, if thus, the volume of

traffic is high regarding the bottleneck connection, as

packets accumulation in the queue, they’ll hold off on

being transmitted, Long-term maintenance of this

condition might probably result in congestion and

overflow. PSARED familiarizes its drop level built on the

detected𝜌(𝑡), for high load, PSARED operates

aggressively in a linear manner to prevent force drop and

congestion, notwithstanding for light to moderate loads,

PSARED works moderate mode, where its nonlinearity

depend on the detected value of𝜌(𝑡).
In PSARED maximum drop probability maxp is described

as a result of the observed load 𝜌 (i.e. high maxp for high

load and low maxp for light load) and average queue

length (avg) is calculated by the Exponential Weighted

Moving Average (EWMA) (equation (2.1)). If avg <

minth, then no packet will be released and if avg ≥ maxth

all the arriving packets will be dropped with probability

1. But still, if minth ≤ avg < maxth, then packet releasing

possibility increases linearly or nonlinearly (based on the

observed𝜌(𝑡)) from 0 to the present maxp. PSARED drop

function is obtainable in equation (10).

𝑝𝑃𝑆𝐴𝑅𝐸𝐷 =

{

0, 𝑎𝑣𝑔 < 𝑚𝑖𝑛𝑡ℎ

(
𝑎𝑣𝑔−𝑚𝑖𝑛𝑡ℎ

𝑚𝑎𝑥𝑡ℎ−𝑚𝑖𝑛𝑡ℎ
)

𝑖

𝑚𝑎𝑥𝑝, 𝑚𝑖𝑛𝑡ℎ ≤ 𝑎𝑣𝑔 < 𝑚𝑎𝑥𝑡ℎ

1, 𝑎𝑣𝑔 ≥ 𝑚𝑎𝑥𝑡ℎ

 (10)

𝑖 = 𝑘
1

𝜌(𝑡), 𝑘 ≥ 2 (11)

Essentially, PSARED adjusts its maxp based on present

weight (high maxp for high load, moderate maxp for

moderate load, and low maxp for light load), furthermore

in PSARED once avg drops in minth and maxth, a function

of drops whose exponent is also a function of load is

defined and it increases linearly or nonlinearly from 0 to

the present maxp. Then, the exponent of PSARED’s drop

gathering is a function of load, as such its amount of

nonlinearity depend also going on current load, i.e. its

degree of nonlinearity increases as load decreases (its

slope decreases) and decreases as load increases.

Subsequently, Based on load situation, PSARED can

work in two modes, linear and nonlinear modes. It works

in nonlinear (moderate) mode for light to pacify load and

changes to linear. These attributes of PSARED make it

self-adaptive so that a variety of loads may be handled

with ease.

The pseudo code of the PSARED Queuing algorithm

Algorithm 1: PSARED QUEUING ALGORITHM

1. Input: minth, maxth, w, k, µ,

2. Output: count

3. Initialization:

4. avg ← 0

5. count ← -1

6. for all source nodes do

7. Return λ(t) [Mbps] (equation 8)

8. ρ(t) ← λ(t)/µ (equation 9)

9. i ← k1/ρ(t) (equation 11)

10. maxp ← 1- e-ρ(t)

11. end for

12. for each packet arrival do

13. Calculate the average queue size: avg

14. if the queue is nonempty then

15. avg ← (1 – w) ×avg' + w × q(t)

16. else

17. m ← f (t – tqueue_idle_time)

18. avg ← ((1 – w)m × avg')

19. end if

20. Determine packet discard

21. if avg < minth then

22. No packet drop

23. Set count ← -1

24. else if minth ≤ avg < maxth then

25. Set count ← count + 1

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 23

26. Calculate the packet drop probability Pb

27. Pb ← ((avg - minth) / (maxth - minth))i × maxp

28. Pa ← Pb / (1 – count . Pb)

29. Mark the arriving packet with probability Pa

30. Set count ← 0

31. Drop the packet

32. else if maxth ≤ avg then

33. Drop the arriving packet

34. Set count ← 0

35. else count ← -1

36. When the router’s queue becomes empty

37. Set tqueue_idle_time ← t

38. end if

39. end for

The pseudo code of the PSARED scheduling algorithm.

Algorithm 2: PSARED SCHEDULING ALGORITHM

1. Input: 𝛽1, 𝛽2,𝑡𝑐1, 𝑡𝑐2

2. Output: 𝑃𝑖(𝑡)

3. Initialization:

4. //Compute the overall priority of the front packet in the Highest Priority Queue (𝑄1)

5. Return 𝑃𝑟1(𝑡) //Priority value of the front packet of 𝑄1

6. 𝑡𝑒1 = 𝑡 − 𝑡𝑐1

7. 𝑃1(𝑡) = (𝛽1 × 𝑃𝑟1(𝑡)) + (𝛽2 × 𝑡𝑒1)

8. //Compute the overall priority of the front packet in the Lowest Priority Queue (𝑄2)

9. Return 𝑃𝑟2(𝑡) //Priority value of the front packet of 𝑄2

10. 𝑡𝑒2 = 𝑡 − 𝑡𝑐2

11. 𝑃2(𝑡) = (𝛽1 × 𝑃𝑟2(𝑡)) + (𝛽2 × 𝑡𝑒2)

12. If (𝑃1(𝑡) > 𝑃2(𝑡)) then

13. return 𝑃1(𝑡)

14. else

15. return 𝑃2(𝑡)

Table 1: PSARED Algorithms Parameter

Saved Variable Fixed Parameter Other

avg present average queue length w: queue weight t: present time

avg': considered earlier average

queue length

minth: minimum threshold for the

queue

λ(t): current total incoming traffic

load (Mbps)

tqueue_idle_time: start of the queue idle

time

maxth: maximum threshold for the

queue

ρ: present bottleneck traffic load

count: packets since last marked

packets

Δ: queue’s middle

Threshold

q(t): current queue length

maxp: current maximum drop

probability

µ: bottleneck connection

size (Mbps)

f(t): a linear gathering of the time t

i: proponent of the nonlinear drop

function

 pb: temporary probability used in the

calculation

k: advocate for nonlinear drop

functions

 pa: Present packet-marking

likelihood

RESULTS AND DISCUSSION

Simulation studies were carried out to verify the efficacy

of the suggested PSARED algorithm. The NS-2.35

simulator on Ubuntu 18.04 LTS was used for the

simulation studies, which used the network topology

shown in Figure 2.

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 24

Figure 2: Topology for Simulation

The two IoT gateways make up the topology The

bottleneck that connects A and B and owned by N TCP

source nodes. The bottleneck link can support up to 10

Mbps and a broadcast delay of 20 ms. Through

connections, the network's hosts are connected to the IoT

gateways. (Each has the ability to support 10 Mbps), and

their broadcast delays are 10 ms.

The simulation produced various load levels by altering

the value of N, which ranged from 5 to 95 TCP source

nodes. An active queue management algorithm is applied

at IoT gateway A, whose capacity for a queue is 140

packets. The packet size generated by sources is 512

bytes. An updated Reno TCP setup is used. When a

network has a specific quantity of TCP source nodes, a

200-s simulation is conducted, and the mean value of the

network’s parameter is obtained. For computation of the

traffic load (ρ), the present figure amount arriving in line

λ(t) is acquired from the object that monitors queues. For

the presentation study, the input factors that were

employed were minth = 20, maxth = 120, where wq =

0.002, = 0.75, and k = 2. SARED and the suggested

PSARED performance were compared.

Figure 3: Throughput vs. number of node

Based on the simulation experiments conducted and the

analysis of throughput as seen in Figure 3, Show that even

with low loads, PSARED reduces throughput;

nevertheless, in moderate and high load situations, the

throughput of both PSARED and SARED reached the

maximum limit. The results show that PSARED

establishes a critical and non-critical discipline that

enables the server to send high-priority packets at the

head of the queue. In a similar vein, the discretion rule

ensures that, during their non-critical intervals, high-

priority packets do not obstruct the delivery of low-

priority packets. Consequently, the sum of all of packets

received increased massively by exploiting the critical

and non-critical packet data. On the other hand,

compared to the SARED, the PSARED performs better.

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 25

Figure 4: Delay vs. Numbers of flow

The graph in Figure 6 illustrates the delay of PSARED

and SARED. The amount of time that passes between

when an application in the leaf nodes generates a packet

and when it reaches the IoT gateways is known as the

average delay. For time-sensitive applications, it is more

crucial to calculate the average delay of the high-priority

packet in the PSARED. The average delays of the

PSARED and SARED are shown in Figure 4. The

PSARED has a lower average delay than the SARED.

The explanation for this is that high-priority packets are

sent directly to take the lead in the queue as they arrive at

the link server in the PSARED and are instantly

categorized based on that information. Additionally,

high-priority packets are referred unavailable of the link

server, while low-priority packets wait in the queue if the

discretion rule is met.

Figure 5: Packet loss rate vs. number of flows

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 26

Figure 5 displays a graph of the packet loss rate. The

graph shows that when there is a high load, PSARED's

packet loss rate is significantly lower than SARED's. The

issue is attributed to the heavy load; the average queue

length of SARED approached the maxth. PSARED's

packet loss is primarily due to its drop policy, while

SARED's loss can result from its drop policy or force

drop.

CONCLUSION

A priority-base congestion control algorithms (PSARED)

was develop in this paper. In contrast to RED and certain

upgraded versions with drop patterns that are static.

PSARED differentiates between critical and non-critical

data packets in IoT gateways so as to prevent packet

collision and congestion. PSARED improves the

performance of SARED in relations of throughput, end to

end delay and packet loss rate when both critical and non-

critical data packets are present. Later, we will look into

PSARED, which is suggested for further investigation

and uses a machine learning model to classify critical and

non-critical data packets.

REFERENCES

A. Singh. “Congestion Control techniques in Computer

Networks,” GeeksforGeeks.org

Adamu, A., Surajo, Y., Jafar, M. T. (2021). SARED:

SelfAdaptive Active Queue Management Scheme for

Improving Quality of Service in Network Systems.

Computer Science 22(2), 253–267

Akshatha R. & Vedananda D. (2018). Implementation of

Hybrid Modified RED Algorithm for Congestion

Avoidance in MANETS. International Journal for

Research in Applied Science and Engineering

Technology, 6(5), 2414–2419.

https://doi.org/10.22214/ijraset.2018.5396

Avoidance in Computer Networks with a Connectionless

Network Layer A Binary

Bonald, T., May, M., Bolot, J., Bonald, T., May, M.,

Analytic, J. B., & Bonald, T. (2015). Analytic evaluation

of RED performance To cite this version : Analytic

Evaluation of RED Performance.

Braden, B. (USC/ISI), Clark, D. (MIT L., Crowcroft, J.

(UCL), Davie, B. (Cisco S., Deering, S. (Cisco S., Estrin,

D. (USC), … Zhang, L. (UCLA). (1998). RFC 2309:

Recommendations on Queue Management and

Congestion Avoidance in the Internet. 1–18.

Chaudhary, P., & Kumar, S. (2017). A Review of

Comparative Analysis of TCP Variants for Congestion

Control in Network. International Journal of Computer

Applications, 160(8), 28–34.

https://doi.org/10.5120/ijca2017913087

Control. Rochester Institute of Technology. Accessed

from http://scholarworks.rit.edu

Dempf, G., & Grenzdoerfer, S. (1981). Data Networks. In

AEG-Telefunken Progress (Allgemeine Elektricitaets-

Gesellschaft). https://doi.org/10.1049/ep.1987.0389

Feedback Scheme for Congestion Avoidance in Computer

Networks with a

Feng, W. C., Shin, K. G., Kandlur, D. D., & Saha, D.

(2002). The Blue active queue management algorithms.

IEEE/ACM Transactions on Networking, 10(4), 513–528.

https://doi.org/10.1109/TNET.2002.801399

Floyd S. (2000). Recommendation on using the gentle

variant of RED.

Floyd, Sally, & Jacobson, V. (1993). Random Early

Detection Gateways for Congestion Avoidance.

IEEE/ACM Transactions on Networking, 1(4), 397–413.

https://doi.org/10.1109/90.251892

Forouzan A. Behrouz (2007). Data Communications and

Networking 4th edn., McGraw-Hill Company New York,

NY 10020, USA.

Gilberto Flores Lucio, Marcos Paredes-farrera,

Emmanuel Jammeh, Martin Fleury, and Hashem (1989).

Analysis of random drop for gateway congestion control.

Ma, Usa. Retrieved from

http://www.dtic.mil/dtic/tr/fulltext/u2/a218737.pdf

Heinanen, J., Finland, T., Baker, F., System, C., & Weiss,

W. (1999). RFC 2597 - Assured Forwarding PHB Group.

Retrieved February 10, 2016, from IETF - Network

Working Group website: https://www.rfc-

editor.org/rfc/pdfrfc/rfc2597.txt.pdf

Henna, S.; Sajeel, M.; Bashir, F.; Asfand-e-Yar, M.;

Tauqir, M. A Fair Contention Access Scheme for Low-

Priority Traffic in Wireless Body Area Networks. Sensors

2017, 17, 1931. [CrossRef] [PubMed]

http://www.icir.org/oyd/red/gentle.html .

https://www.geeksforgeeks.org/congestion-control-

techniquesin-computer-networks/ (assessed Dec. 5,

2020).

Hu, L., & Kshemkalyani, A. D. (2004). HRED: A simple

and efficient active queue management algorithm.

Proceedings - International Conference on Computer

Communications and Networks, ICCCN, 00(C), 387–393.

https://doi.org/10.1109/icccn.2004.1401681

Huang, N. F., Jai, G. Y., Chao, H. C., Tzang, Y. J., &

Chang, H. Y. (2013). Application traffic classification at

https://doi.org/10.22214/ijraset.2018.5396
https://doi.org/10.5120/ijca2017913087
http://scholarworks.rit.edu/
https://doi.org/10.1049/ep.1987.0389
https://doi.org/10.1109/TNET.2002.801399
https://doi.org/10.1109/90.251892
http://www.dtic.mil/dtic/tr/fulltext/u2/a218737.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc2597.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc2597.txt.pdf
http://www.icir.org/oyd/red/gentle.html
https://www.geeksforgeeks.org/congestion-control-techniquesin-computer-networks/
https://www.geeksforgeeks.org/congestion-control-techniquesin-computer-networks/
https://doi.org/10.1109/icccn.2004.1401681

A Priority-Based Self-Adaptive… Sada et al. JOBASR2024 2(1): 18-27

Journal of Basics and Applied Sciences Research Volume 2(1) 27

the early stage by characterizing application rounds.

Information Sciences, 232(22), 130–142.

https://doi.org/10.1016/j.ins.2012.12.039

Jain, R. (1990). Congestion Control in Computer

Networks: Issues and Trends. IEEE Network, 4(3), 24–

30. https://doi.org/10.1109/65.56532 .

Martin J. Reed (2003). Opnet modeler and ns-2:

Comparing the accuracy of

Misra, V., Gong, W. B., & Towsley, D. (2000). Fluid-

based analysis of a network of AQM routers supporting

TCP flows with an application to RED. Computer

Communication Review, 30(4), 151–160.

https://doi.org/10.1145/347057.347421

Obinna Eva, N., & Kabari, L. G. (2018). Comparative

Analysis of Drop Tail, Red and NLRED Congestion

Control Algorithms Using NS2 Simulator. International

Journal of Scientific and Research Publications (IJSRP),

8(8), 536–543.

https://doi.org/10.29322/ijsrp.8.8.2018.p8069

Patel, S. (2013). Performance analysis and modeling of

congestion control algorithms based on active queue

management. 2013 International Conference on Signal

Processing and Communication, ICSC 2013, 449–454.

https://doi.org/10.1109/ICSPCom.2013.6719832

Plasser, E., Ziegler, T., & Reichl, P. (2010). On the Non-

Linearity of the RED Drop Function.

Ramakrishnan, K. K., & Jain, R. (1988). A Binary

Feedback Algorithm for Congestion

Sungur Asli (2015). TCP – Random Early Detection

(RED) mechanism for Congestion

Zhang, Y., Ma, J., Wang, Y., & Xu, C. (2012). MRED :

An Improved Nonlinear RED Algorithm. 44(Iccae 2011),

6–11. https://doi.org/10.7763/IPCSIT.2012.V44.2

Zheng B. (2006). DSRED: A New Queue Management

Algorithm for the Next Generation Internet. IEICE

Transactions on Communications, E89-B(3), 764–774.

https://doi.org/10.1093/ietcom/e89-b.3.764

Zhou, K., Yeung, K. L., & Li, V. O. K. (2006). Nonlinear

RED: A simple yet efficient active queue management

algorithm. Computer Networks, 50(18), 3784–3794.

https://doi.org/10.1016/j.comnet.2006.04.007

https://doi.org/10.1016/j.ins.2012.12.039
https://doi.org/10.1109/65.56532
https://doi.org/10.1145/347057.347421
https://doi.org/10.29322/ijsrp.8.8.2018.p8069
https://doi.org/10.1109/ICSPCom.2013.6719832
https://doi.org/10.7763/IPCSIT.2012.V44.2
https://doi.org/10.1093/ietcom/e89-b.3.764
https://doi.org/10.1016/j.comnet.2006.04.007

