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ABSTRACT 

The SIR model, an epidemiological model, divides a population into three 

compartments: Susceptible (S), Infected (I), and Recovered (R). It is widely used 

to understand the spread of infectious diseases and predict epidemic outcomes 

based on factors such as transmission rates and population dynamics. A 

deterministic epidemic mathematical model to describe the transmission 

dynamics of an infectious disease was constructed and analyzed by incorporating 

memory term which provides information on the current and past disease states. 

The model revealed two key equilibria: a disease-free equilibrium and an endemic 

equilibrium. The calculated basic reproductive number𝑅0, was employed to 

establish that when 𝑅0 < 1, the disease-free equilibrium is locally asymptotically 

stable, while the endemic equilibrium is locally asymptotically stable when 𝑅0 >
1. Additionally, we explored the global stability of these equilibria using 

Lyapunov functions and Dulac's method, respectively. To validate our analytical 

findings, we conducted numerical simulations of the model which show the 

importance of history in the dynamic spread and elimination of disease.

 

INTRODUCTION 

The SIR model is undoubtedly the most famous 

mathematical model for the spread of an infectious 

disease. In 1927, Kermack and McKendrick developed 

the SIR model, which divides a population into three 

classes: susceptible, infective, and recovered. This model 

is fundamental for understanding how infectious diseases 

spread within populations (Kermack and McKendrick 

1927). 

Compartmental deterministic models are frequently used 

to model the transmission of infectious diseases, 

providing a valuable framework for analyzing and 

predicting how diseases spread within populations 

(Brauer and Castillo-Chávez 2001, Capasso 2008, 

Diekmann et al. 2013).  

 Cooke, 1979 Developed an SIR epidemic model that 

incorporates a bilinear incidence rate and introduces a 

discrete time delay represented as βSI. This model was 

designed to explore the dynamics of infectious diseases 

transmitted by vectors such as mosquitoes or rats. The 

time delay component reflects the period during which 

the infectious agents mature within the vector before 

being transmitted to humans. This concept of time delay 

has gained significant biological importance in epidemic 

modeling, as highlighted in earlier studies (Cooke 1979, 

Diekmann et al. 2013). 

In 2010, Beretta and Takeuchi conducted a study on 

discrete SIR epidemic models derived from SIR models 

with distributed delays. They employed a Lyapunov 

functional technique to analyze these models and found 

that the global dynamics of each discrete SIR epidemic 

model can be fully explained by a single threshold 

parameter. Importantly, they determined that discrete 

time delays do not significantly affect the global stability 

of the endemic equilibrium in the model. 

Various variations of the SIR compartmental model have 

been developed, with some of these outlined in (Adeniran 

et al., 2022, Adesanya et al., 2016, Adewale et al., 2015a; 

2015b, Ajao et al., 2023, Akinwumi et al., 2021, 

Almuqrin et al., 2021, Alzaid et al., 2021, Beretta et al., 
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2010, Foy et al. 2010,  Olopade et al. 2017; 2021a; 2021b; 

2021c; 2022, Adesola et al., 2024a, Philemon et al., 2023, 

Ramos et al., 2021, Rao et al., 2019, and Srivastava et al., 

2019). 

 The SIR epidemic model is a fundamental tool for 

understanding, addressing, and finding solutions to 

epidemic diseases. It offers a structured framework for 

analyzing disease transmission and is essential for 

shaping effective public health responses to minimize the 

impact of infectious outbreaks on society. 

Epidemiologists and public health officials heavily rely 

on the SIR model to predict the course of an epidemic, 

allowing them to strategically implement control 

measures and allocate resources efficiently. This includes 

planning for vaccination programs, quarantine strategies, 

and treatment protocols, as well as considering the 

historical context of the disease. 

The unique contribution of this research lies in its focus 

on the "memory term," which provides information about 

both the current and past states of a disease. This 

inclusion enhances the model's capacity to consider the 

historical context, offering a more comprehensive and 

insightful approach to analyzing epidemics.  

The paper is structured as follows: 

 

MATERIALS AND METHODS 

In this section, we present the mathematical formulation 

of an SIR epidemic model. Here, the total population, 

denoted as𝑁, is divided into three distinct classes: 

susceptible(𝑆), infected(𝐼), and removed (or 

recovered)(𝑅), individuals. The model assumes that the 

disease is transmitted from infected individuals to 

susceptible individuals through direct contact. 

In our model, it is assume that the total recruitment at any 

given time is represented as '𝑏' and all newly recruited 

individuals are placed in the susceptible class. We define 

𝛽 as the disease transmission rate, and the non-linear 

incidence rate is denoted as 
𝛽𝑆𝐼

1+𝛼𝐼
where '𝛼'is the 

memory term that provides information about the current 

and past disease states. The population of susceptible 

individuals is reduced by the natural death rate'𝜇'1. 

Hence; 
𝑑𝑆

𝑑𝑡
= 𝑏 −

𝛽𝑆𝐼

1+𝛼𝐼
− 𝜇1𝑆   (1) 

The infected population in the model grows as new 

infections occur through the 
𝛽𝑆𝐼

1+𝛼𝐼
 simultaneously, the 

population decreases due to the natural death rate and 

recovery rates represented by(𝜇2&𝜃) respectively. 

Therefore; 
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1+𝛼𝐼
− (𝜇2 + 𝜃)𝐼   (2) 

The population of recovered individuals in the model 

increases due to the recovery rate 𝜃and decreases as a 

result of the natural death rate𝜇3. Therefore, the time rate 

of change for the population of recovered individuals can 

be described by the following equation; 
𝑑𝑅

𝑑𝑡
= 𝜃𝐼 − 𝜇3𝑅    (3) 

All parameters within equations (1) to (3) are 

nonnegative. These equations can be combined into the 

following unified form. 

 

 
𝑑𝑆

𝑑𝑡
= 𝑏 −

𝛽𝑆𝐼

1+𝛼𝐼
− 𝜇1𝑆  

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1+𝛼𝐼
− (𝜇2 + 𝜃)𝐼   (4) 

𝑑𝑅

𝑑𝑡
= 𝜃𝐼 − 𝜇3𝑅   

 

 
Figure 1. Model flow chart of SIR 

 

The model variables and parameters are defined as follows; 
 

Table 1:  Description of Variables  

Parameters           
 
Description     

 
𝑆(𝑡)  Proportion of the population Susceptible to the disease at time t. 

𝐼(𝑡)   Proportion of the population of Infective members at time t. 

𝑅(𝑡)
  

Proportion of the population who have been removed from the possibility   

                of infection at time t. 
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Table 2: Description of Parameters 

Parameters           
 
Description        Value Source

 
𝜇1    Death rates of the susceptible class                      0.02            Safiel et al. 2012  

𝜇2    Death rates of the infectious class                     0.02            Ibrahim et al. 2015 

𝜇3   Death rates of the removed class                     0.02            Ibrahim et al. 2015 

 𝑏     Recruitment rate of the population                        5            Calibrated 

𝛽     Contact rate         0.001            Sajid et al. 2013 

𝛼    Memory term           0.01            Calibrated 

𝜃    Treatment rate                          0.1           Sajid et al. 2013  

 

Analysis of the Model 

Theorem 1:  The closed set 𝐷 = {(𝑆, 𝐼, 𝑅) ∈ 𝑅+
3 : 𝑁 ≤

𝑏

𝜇1
} 

is positively- invariant with non-negative initial values in 

𝑅+
3  

Proof: Consider the feasible region D as defined above, 

then the rate of change of the total population is given by; 
𝑑𝑁

𝑑𝑡
= 𝑏 − 𝜇𝑁     (5) 

It follows that 
𝑑𝑁

𝑑𝑡
≤ 𝑏 − 𝜇𝑁. Hence, if 𝑁(0) ≤

𝑏

𝜇1
, then 

𝑁(𝑡) ≤
𝑏

𝜇1
. Therefore, all solutions of the model with 

initial values in D remain in D for all time t > 0 and this 

implies that D is positively invariant.  

For equilibrium point, we set 
𝑑𝑆

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
=
𝑑𝑅

𝑑𝑡
= 0     (6) 

For disease free equilibrium 

Hence the uninfected equilibrium  𝜀0 = (
𝑏

𝜇1
, 0,0) 

Then the infected equilibrium is 

(
𝛼𝑏+𝜇2+𝜃

(𝛽+𝜇1𝛼)
),

𝑏𝛽−𝜇1(𝜇2+𝜃)

(𝛽+𝜇1𝛼)(𝜇2+𝜃)
,(

𝑏𝛽−𝜇1(𝜇2+𝜃)

(𝛽+𝜇1𝛼)(𝜇2+𝜃)
)
𝜃

𝜇3
 

 

Uninfected equilibrium  

(𝑆, 𝐼, 𝑅) = (
𝑏

𝜇1
, 0,0)  

Then denote the infected equilibrium by𝜀* = (𝑆0, 𝐼0, 𝑅0) 

(𝑆0,𝐼0,𝑅0)= (
𝛼𝑏+𝜇2+𝜃

(𝛽+𝜇1𝛼)
),

𝑅0−1

(𝛽+𝜇1𝛼)(𝜇2+𝜃)
,(

𝑅0−1

(𝛽+𝜇1𝛼)(𝜇2+𝜃)
)
𝜆

𝜇3

     (7) 

 

Analysis of Basic Reproduction Number (R0) 

The basic reproduction number of the model (4) with the 

disease free equilibrium point 𝜀0 = (
𝑏

𝜇1
, 0,0) is given as 

𝑅0 =
𝛽𝑏

𝜇1(𝜇2+𝜃)
. The threshold quantity 𝑅0 is the basic 

reproduction number of the normalized model system (4). 

It is the average number of new secondary infections 

generated by a single infected individual in his or her 

infectious period. (Ajao et al., 2023, Adesola et al., 

2024b). 

 

Local Stability of Disease Free Equilibrium 

The local stability of 𝜀0 shall be determined using 

Jacobian matrix model (4). 

Let 

𝑑𝑆

𝑑𝑡
= 𝑓1 = 𝑏 −

𝛽𝑆𝐼

1 + 𝛼𝐼
− 𝜇1𝑆  

𝑑𝐼

𝑑𝑡
= 𝑓2 =

𝛽𝑆𝐼

1 + 𝛼𝐼
− (𝜇2 + 𝜃)𝐼  

𝑑𝑅

𝑑𝑡
= 𝑓3 = 𝜃𝐼 − 𝜇3𝑅 

Before finding the characteristic equation, we will 

evaluate the Jacobian matrix at DFE=(
𝑏

𝜇1
, 0,0). The 

Jacobian matrix of the model is computed below;  

𝐽((𝜀0) =

(

 
 
−𝜇1 −

𝛽𝑏

𝜇1
 0

0
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃)  0

0  𝜃 − 𝜇3)

 
 

 

     (8) 

The characteristic equation of (4) above are obtained as 

|𝐽𝜀0 − 𝜆𝐼|=0, where I is the (3*3) identity matrix. 

Then, 
|𝐽𝜀0 − 𝜆𝐼| = 

det

(

 
 
−𝜇1 − 𝜆 −

𝛽𝑏

𝜇1
                                  0

0
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃) − 𝜆            0

0  𝜃 − 𝜇3 − 𝜆 )

 
 

 

     (9) 

(−𝜇1 − 𝜆)(−𝜇3 − 𝜆)(
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃) − 𝜆) 

The eigenvalues of the Jacobian matrix are; 𝜆 = −𝜇1, 𝜆 =

−𝜇3, 𝜆 =
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃) 

Because𝜇2 > 0, there are two cases for equilibrium 

behavior: 

(1) If 
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃) < 0, then DFE is a stable node 

(2) If 
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃) > 0, then DFE is a saddle point 

Obviously, if 𝑅0 < 1, then the eigen value 
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃) 

is negative, then 𝜀0is locally asymptotically stable, if 

𝑅0 > 1, then, the eigen value 
𝛽𝑏

𝜇1
− (𝜇2 + 𝜃) is positive, 

hence,  𝜀0is unstable. 

 

Theorem 2: If 𝑅0 ≤ 1, then the disease free equilibrium 

𝜀0 of the system (4) is globally asymptotically stable 
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Proof: To establish the global stability of the disease free 

equilibrium𝜀0, we construct the following Lyapunov 

function 𝐿:Ω → 𝑅 

𝐿(𝑆, 𝐼) = 𝐼 
Calculating the derivative of 𝐿along the solution of the 

proposed system, we obtain  

𝐿𝐼 =
𝛽𝑆𝐼

1 + 𝛼𝐼
− (𝜇2 + 𝜃)𝐼 

= (𝜇2 + 𝜃) (
𝑅0𝑆

1+𝛼𝐼
− 1) 𝐼             (10) 

We see that 

𝐿𝐼 ≤ 0, for𝑅0 < 1. 

If 𝑅0 < 1 then𝐿𝐼 = 0 ⇔ 𝐼 = 0. 

If 𝑅0 = 1 then𝐿𝐼 = 0 ⇔ 𝑆 = 1. 

Therefore by LaSalle’s invariance principle (1987), the 

disease free equilibrium is locally asymptotically stable. 

Theorem 3: If𝑅0 > 1, the endemic equilibrium 𝜀* of the 

system (4) is locally asymptotically stable if 𝑐3 > 0and 

𝑐1𝑐2 − 𝑐3 > 0. 

Proof: Linearizing the Jacobian matrix of system (4) of 

𝜀*; 
𝐽(𝜀*) = 

(

 
 
−

𝛽𝐼*

1+𝛼𝐼*
− 𝜇1 −

𝛽𝑆*

(1+𝛼𝐼∗)2
 0

𝛽𝐼*

1+𝛼𝐼*
                     

𝛽𝑆*

(1+𝛼𝐼∗)2
− (𝜇2 + 𝜃)           0

0         𝜃 − 𝜇3)

 
 

     (11)

 

     

 

The characteristic equation of the matrix equation (11) is 

𝜆3 + 𝑐1𝜆
2 + 𝑐2𝜆 + 𝑐3 = 0  

𝑐1 = 𝜇3 + 𝐵 + 𝜇2 + 𝜃 + 𝐴 + 𝜇1 
𝑐2 = 𝐴(𝜇3 + 𝜇2 + 𝜃) + 𝐵(𝜇3 + 𝜇1) + 
𝜇1(𝜇3 + 𝜇2 + 𝜃) + 𝜇3(𝜇2 + 𝜃) 
𝑐3 = 𝜇3(𝐴(𝜃 + 𝜇2) + 𝐵𝜇1 + 𝜇1(𝜇2 + 𝜃))

 

Where 𝐴 =
𝛽𝐼*

1+𝛼𝐼*
and 𝐵 =

𝛽𝑆*

(1+𝛼𝐼*)2
 

According Hurwitz criterion, when 𝑅0 > 1, the endemic 

equilibrium 𝜀*of system (4) is locally asymptotically 

stable if 𝑐1 > 0and 𝑐1𝑐2 − 𝑐3 > 0.  

 

Theorem 4: (Dulac’s Criterion)  

Consider the following general nonlinear autonomous 

system  

𝑥(𝑡) = 𝑓(𝑥), 𝑥 ∈ 𝐸     (12) 

Let 𝑓 = 𝐶𝐼(𝐸) where E is a simple connected region 

in𝑅2. If there exists a function 𝐻 ∈ 𝐶𝐼(𝐸) such that 

∇. (𝐻. 𝑓) is not identically zero and does not change sign 

in E, the system (12) has no close orbit lying entirely in 

E. if A is an annular region contained in E on which 

∇. (𝐻. 𝑓)  does not change sign, then there is at most one 

limit cycle of the system (12) in A.  

 

Theorem 5: (The Poincare-Bendixson Theorem): 

Suppose that 𝑓 ∈ 𝐶𝐼(𝐸) 
Where E is an open subset of 𝑅𝑛and that the system (12) 

has a trajectory Γ contained in a compact subset 𝑓of E. 

Assume that the system (12) has only one unique 

equilibrium point 𝑥0in 𝑓, then one of the following 

possibilities holds. 

(1) 𝑤(Γ) is the equilibrium point x 

(2) 𝑤(Γ) is a periodic orbit 

(3) 𝑤(Γ) is a graphic  

Theorem 6: Let 𝜀* be the unique positive equilibrium 

point of the system (4), If𝑅0 > 1, then endemic 

equilibrium 𝜀* of the system (4) is globally 

asymptotically stable.  

Proof: Using theorem 4 and 5, consider; 

𝐻(𝑆, 𝐼, 𝑅) =
1

𝑆𝐼𝑅
, 𝑆 > 0, 𝐼 > 0, and 𝑅 > 0, 

∇. (𝐻. 𝑓) = 

Then
∂

∂𝑆
(𝐻. 𝑓1) +

∂

∂𝐼
(𝐻. 𝑓2) +

∂

∂𝑅
(𝐻. 𝑓3)

 

(13) 

=
∂

∂𝑆
[
1

𝑆𝐼𝑅
(𝑏 −

𝛽𝑆𝐼

1 + 𝛼𝐼
− 𝜇1𝑆)] + 

∂

∂𝐼
[
1

𝑆𝐼𝑅
(
𝛽𝑆𝐼

1 + 𝛼𝐼
− (𝜇2 + 𝜃)𝐼)] + 

∂

∂𝑅
[
1

𝑆𝐼𝑅
(𝜃𝐼 − 𝜇3𝑅)] 

=
−𝑏

𝑆2𝐼𝑅
−

𝛼𝛽

𝑅(1+𝛼𝐼)2
−

𝜃

𝑆𝑅2
              (14) 

= −(
𝑏

𝑆2𝐼𝑅
+

𝛼𝛽

𝑅(1+𝛼𝐼)2
+

𝜃

𝑆𝑅2
) < 0

    

(15) 

Hence, according to Dulac’s criterion, there is closed 

orbit in the first quadrant; therefore, the endemic 

equilibrium is globally asymptotically stable. 

 

Numerical Simulation  

In this segment, we employ an iterative approach to 

determine the numerical simulation. When performing 

the numerical simulation, we take into account the 

parameters values presented in table 2.  We apply the 

Runge-Kutta order (4) scheme to solve our model system 

(4) and the results are presented as follows; 
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RESULTS AND DISCUSSION 

 
Figure 2:The Population of Susceptible, Infected and 

Recovered Individuals 

 
Figure 3:The Population of Susceptible, Individuals 

when 𝛼 = 0.0,0.01&0.02 

 
Figure 4:The Population of Infected Individuals when 

𝛼 = 0.0,0.01&0.02 

 
Figure 5:The Population of Recovered, Individuals 

when 𝜃 = 0.1,0.2&0.3 
 

Figure 2 provides a comprehensive illustration of the 

dynamic interaction among susceptible, infected, and 

recovered individuals, capturing the nuanced changes in 

the populations of these three distinct groups over time. 

Within the SIR model framework, susceptibility 

transitions into infection when susceptible individuals 

come into contact with infected counterparts. The 

infection rate is intricately influenced by both the 

transmission rate and the prevailing number of infected 

individuals within the population. 

Moreover, infected individuals within the model have 

two potential outcomes: recovery or mortality. The 

recovery rate emerges as a critical determinant, shaping 

the trajectory of the epidemic. Those who successfully 

recover from the infection gain immunity, effectively 

transitioning into the recovered category. Importantly, 

recovered individuals no longer contribute to the spread 

of the disease, serving as a key element in breaking the 

chain of transmission within the population. This intricate 

interplay of susceptibility, infection, recovery, and 

immunity encapsulates the fundamental dynamics of the 

SIR model. 

In Figure 3, the susceptible population is analyzed across 

various memory term values, specifically, 𝛼 =
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0.0,0.01&0.02. These values represent different degrees 

of memory incorporation, reflecting the influence of past 

and current information on the disease's status. The 

findings highlight a notable trend: as the memory term 

increases substantially, there is a corresponding rise in the 

susceptible population. This observed increase in 

susceptibility implies a prolonged duration during which 

individuals remain susceptible before transitioning into 

the infected state. The larger memory term, indicative of 

enhanced information retention, appears to extend the 

vulnerability of individuals to infection, shaping the 

dynamics of disease transmission. The insights derived 

from Figure 3 underscore the pivotal role of memory in 

influencing the susceptibility dynamics within the context 

of the epidemic model. 

In Figure 4, the impact of the memory term on the 

dynamic spread of the disease is illustrated. As the 

memory term decreases, specifically to lower values, the 

population of infected individuals exhibits an exponential 

increase. This suggests that reduced memory, 

representing limited information retention, is associated 

with a more rapid and sustained rise in the number of 

infected individuals. Conversely, as the memory term 

increases to𝛼 = 0.01&0.02, there is a noticeable 

dampening effect on the dynamic spread of the disease. 

The population of infected individuals starts to decline, 

indicating that a higher degree of memory incorporation 

contributes to a mitigated spread of the disease over time. 

This observation emphasizes the significance of 

information retention, as reflected by the memory term, 

in influencing the trajectory of the epidemic and its 

potential to curb the rise in infections. 

In Figure 5, the population of recovered individuals is 

depicted, showcasing the impact of varying recovery 

rates0.1,0.2&0.3. As the recovery rate increases, there is 

a noticeable growth in the number of individuals 

transitioning to the recovered state. This observation 

highlights the direct relationship between the recovery 

rate and the pace at which individuals recuperate from the 

infection. Specifically, a higher recovery rate corresponds 

to an accelerated recovery process, leading to an 

increased population of individuals who have 

successfully overcome the infection and entered the 

recovered category. This insight underscores the crucial 

role of the recovery rate in influencing the dynamics of 

the epidemic, with higher recovery rates contributing to a 

more substantial pool of recovered individuals over time. 

 

CONCLUSION 

In this present study, our investigation highlights the 

pivotal role of a memory term in shaping the dynamic 

control of epidemic diseases, as evidenced by the 

insightful data presented in Figures 1 to 4 of our SIR 

epidemic model. The results distinctly indicate that a 

substantial memory term, indicative of ample 

information, plays a critical role in empowering medical 

practitioners to devise more effective and targeted control 

strategies for managing and mitigating the spread of the 

disease. This underscores the significance of considering 

the impact of memory and information in the intricate 

process of modeling and controlling epidemics. In 

essence, our findings emphasize the need for a nuanced 

understanding of the interplay between memory, 

information, and epidemic dynamics to foster more 

resilient and responsive public health interventions. 
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