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ABSTRACT 
This paper investigates some aspects of multigroups from Singh's perspective. 

It introduces a structured approach to analyzing the aspects of multigroups 
presented in this paper using dressed epsilon notation. We begin by defining 

the hierarchical decomposition of multisets, establishing that each 𝑟-level 

reference set in the hierarchical decomposition of a multiset over a group is 

itself a subgroup.We then present a fundamental characterization of 

multigroups by proving that a multiset𝐴 is a multigroup over a set 𝑋 if and 

onlyif 𝑥𝑦−1 ∈𝑝 𝐴, ∀𝑥 ∈𝑚 𝐴 ⟹ 𝑝 ≥ (𝑚 ∧ 𝑛). Additionally, we define the sets 

𝐴∗ and 𝐴∗and prove that both are subgroups of 𝑋 using Singh’s dressed epsilon 

notation. Our work further investigates the algebraic properties of 

multigroupsand establishes criteria for commutativity. We also demonstrate 

that while the intersection of two multigroups is always a multigroup, their 
union does not necessarily inherit this structure. The concept of submultigroup 

is introduced to formalize the relationship between two multigroups. Finally, 

we establish the equivalence between certain multigroup properties, such as the 

symmetry of multisets based on product of elements and conjugate conditions. 
 

INTRODUCTION 

The concept of groups forms a fundamental pillar in 

abstract algebra, with applications spanning fields such as 

mathematics, computer science and physics. Classical 

group theory primarily deals with sets and binary 

operations that satisfy closure, associativity, the existence 
of an identity element, and the presence of an inverse. 

However, there is a growing interest in generalizing these 

notions to accommodate multisets, leading to the concept 

of multigroups (Baumslag and Chandler, 1968). 

Singh introduced the notion of a multigroup as a natural 

extension of the classical group, utilizing the dressed 

epsilon notation (∈+, ∈𝒏, ∈+
𝒏 ) to capture the multiplicity 

of elements within the group structure. The dressed 

epsilon notation provides a precise way to express that an 

element belongs to a multiset with a certain multiplicity, 
thereby facilitating the extension of group operations to 

multisets. The motivation behind studying multigroups 

lies in their potential to model complex systems where 

redundancy and repetition are inherent, such as in 

computational and combinatorial contexts. (Singh, 2006 

and Singh et al., 2008). 

In this paper, we explore the fundamental properties and 

structure of multigroups within the framework of group 

theory. We begin by establishing the hierarchical 

decomposition of multisets, providing a systematic way to 

organize elements based on their multiplicity levels. This  

 
 

 

 

 

decomposition is crucial for understanding how 

multigroups can be decomposed into structured 

subgroups (Singh and Isah, 2016). 

We then delve into the properties of multigroups, 

presenting necessary and sufficient conditions for a 

multiset to qualify as a multigroup. We investigate the 
product and inverse conditions that characterize 

multigroups and examine how these properties extend 

from traditional group axioms. Furthermore, we 

explore the algebraic relationships between 

multigroups, including the commutative properties of 

multigroup multiplication, and provide conditions 

under which the product of two multigroups remains a 

multigroup. We also examine intersection and union 

operations on multigroups, highlighting scenarios 

where these operations preserve the multigroup 

structure.(Ejegwa and Ibrahim, 2020). 
Through this study, we aim to enrich the theoretical 

foundation of multigroups by identifying their 

structural characteristics, algebraic properties, and 

potential applications. Our results not only bridge the 

gap between classical group theory and multiset theory 

but also open avenues for applying multigroup 

concepts to real-world problems where element 

repetition plays a significant role (Peter, et al., 2025). 

Recent studies have further enriched the understanding 

of multigroups. Nazmul et al. (2013) introduced  
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foundational concepts related to multigroups derived from 

multisets. Awolola and Ibrahim (2016) explored various 

properties of multigroups, while Awolola and Ejegwa 

(2017) examined the order of elements within these 

structures. Awolola (2019) investigated cyclic multigroup 
families, shedding light on their structural characteristics. 

Additionally, Ibrahim et al. (2016) provided a 

comprehensive overview of multigroup theory and its 

potential applications. 

 

MATERIALS AND METHODS 

i. This study employs a theoretical approach to 

investigating the properties and structures of 

multigroups within the framework of multiset 

theory.  

ii. The research methodology encompasses the 

following key steps. Previous works on 

multigroups are analyzed. 

iii. The study established a theoretical framework 

for multigroups. This included defining 

multigroups in the context of multisets and 

formulating precise definitions and notations to 
capture the multiplicity of elements within these 

structures. 

iv. A series of propositions were formulated to 

characterize the algebraic properties of 

multigroups. Each proposition was accompanied 

by rigorous mathematical proofs to validate the 

conditions under which a multiset qualifies as a 

multigroup. 

v. The study investigated various operations within 

multigroups, including multiplication, inversion, 

intersection, and union. The closure properties of 

these operations were examined to determine 
how they affect the multigroup structure. 

vi. Specialized substructures within multigroups, 

were defined and analyzed. The study explored 

the conditions under which these substructures 

form subgroups and their significance in the 

broader context of multigroup theory. 

 

Preliminary Definitions  

Definition 1 (Multiset) A multiset 𝑀 over a domain set𝐸 

is a collection of elements of 𝐸 with repetitions allowed. 

The set 𝐸 is called the ground or generic set of the class 

of all multisets containing elements from 𝐸.  

Definition 2 (Union) Suppose 𝑀 and 𝑁are two multisets 

over a ground set 𝑆, then 𝐴 ∪ 𝐵 is the multiset defined by 

𝑥 ∈𝑘 (𝑀 ∪ 𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 ⟹  𝑘 =
max (𝑚, 𝑛). 

Definition 3 (Intersection) Suppose𝑀 and 𝑁are two 

multisets over a ground set 𝑆, then 𝐴 ∪ 𝐵 is the multiset 

defined by 𝑥 ∈𝑘 (𝑀 ∪ 𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 ⟹
 𝑘 = min (𝑚, 𝑛). 

Definition 4 Let 𝐴 and 𝐵 be multigroups over a group 

𝑋. The product 𝐴 ∘  𝐵 is defined such that for any 

element 𝑥 ∈+ 𝐴 ∘ 𝐵, there exist elements 𝑎 ∈+ 𝐴 and 

𝑏 ∈+ 𝐵 such that 𝑥 = 𝑎 ∙ 𝑏 where ∙ denotes the group 

operation. 

 

RESULTS AND DISCUSSION 

Definition 5 (Multigroup) Let 𝑋be a group. A 

multiset𝐺 over 𝑋 is said to be a multigroup over 𝑋 if 

it satisfies the following two conditions: 

(i) 𝑥 ∈𝑚 𝐺 ∧ 𝑦 ∈𝑛 𝐺 ⟹

𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐺 ∀𝑥, 𝑦 ∈ 𝑋; (Multiplication 

condition) 

(ii) 𝑥 ∈𝑛 𝐺 ⟹ 𝑥−1 ∈+
𝑛 𝐺 ∀𝑥 ∈ 𝑋; (Inverse 

condition) 

 

Example 1 

For example, consider the cyclic group of order 4 

𝑋 = {𝑒, 𝑎, 𝑎2, 𝑎3} be the cyclic group of order 4, 

where 𝑎4 = 𝑒. Let the multiset 𝐺 =

{𝑒, 𝑒, 𝑒, 𝑎, 𝑎, 𝑎2, 𝑎2, 𝑎3, 𝑎3} be a multiset over 𝑋. The 

membership conditions are given as follows: 

Multiplication conditions: 

For all 𝑥, 𝑦 ∈ 𝑋, we verify that the multiplication 

condition 

𝑥 ∈𝑚 𝐺 ∧ 𝑦 ∈𝑛 𝐺 ⟹ 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐺 ∀𝑥, 𝑦 ∈ 𝑋         (1) 

holds: 

𝑒𝑎 ∈2 𝐺, since 𝑎 ∈3 𝐺 and 𝑒 ∈3 𝐺, so  

𝑒𝑎 = 𝑎 ∈+
(3∧3)

𝐺. 

𝑒𝑎2 ∈2 𝐺, since 𝑎2 ∈2 𝐺 and 𝑒 ∈3 𝐺, so  

𝑒𝑎2 = 𝑎2 ∈+
(3∧2)

𝐺. 

𝑒𝑎3 ∈2 𝐺, since𝑎3 ∈2 𝐺 and 𝑒 ∈3 𝐺, so  

𝑒𝑎3 = 𝑎3 ∈+
(3∧2)

𝐺. 

𝑎𝑎2 ∈2 𝐺, since 𝑎 ∈3 𝐺 and𝑎2 ∈2 𝐺, so  

𝑎𝑎2 = 𝑎3 ∈+
(3∧2)

𝐺. 

𝑎𝑎3 ∈2 𝐺, since 𝑎 ∈3 𝐺 and𝑎3 ∈2 𝐺, so  

𝑎𝑎3 = 𝑒 ∈+
(3∧2)

𝐺. 

𝑎2𝑎2 ∈2 𝐺, since𝑎2 ∈2 𝐺 so  

𝑎2𝑎2 = 𝑒 ∈+
(2∧2)

𝐺. 

𝑎2𝑎3 ∈2 𝐺, since𝑎2 ∈2 𝐺 and𝑎3 ∈2 𝐺, so  

𝑎2𝑎3 = 𝑎 ∈+
(2∧2)

𝐺. 

𝑎3𝑎3 ∈2 𝐺, since𝑎3 ∈2 𝐺, so  

𝑎3𝑎3 = 𝑎2 ∈+
(2∧2)

𝐺. 

 

Inversion condition 

For all 𝑥 ∈ 𝑋, we verify: 
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𝑥 ∈𝑛 𝐺 ⟹ 𝑥−1 ∈+
𝑛 𝐺                                                      (2) 

𝑎−1 = 𝑎3, and 𝑎3 ∈2 𝐺 ⟹ 𝑎−1 ∈+
2 𝐺 

(𝑎2)−1 = 𝑎2 ∈+
2 𝐺 

(𝑎3)−1 = 𝑎, and 𝑎 ∈2 𝐺 ⟹ (𝑎3)−1 ∈+
2 𝐺 

𝑒−1 = 𝑒, and 𝑒 ∈3 𝐺 ⟹ 𝑒−1 ∈+
3 𝐺 

 

Since both conditions hold, we conclude that 𝐺 is a 

multigroup over 𝑋. 

 
Proposition 1 

Let 𝐴 be a multiset. Then 𝐴 is a multigroup over a set 𝑋 

if and only if 𝑥𝑦−1 ∈𝑝 𝐴 ∀𝑥 ∈𝑛 𝐴 and 𝑦 ∈𝑚 𝐴 ⟹ 𝑝 ≥

min (𝑚, 𝑛) 

Proof 

Assume 𝐴 is a multigroup over 𝑋, By definition of a 

multigroup, we have the following two conditions: 

1. Multiplication condition: If 𝑥 ∈𝑚 𝐴 and 𝑦 ∈𝑛 𝐴 

then 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐴. 

2. Inverse condition: If 𝑥 ∈𝑛 𝐴, then 𝑥−1 ∈+
𝑛 𝐴. 

Since 𝐴 is a multigroup, for any 𝑥, 𝑦 ∈ 𝑋, we have: 

𝑦 ∈𝑚 𝐴 ⟹ 𝑦−1 ∈+
𝑛 𝐴 (by the inverse) condition. 

𝑥 ∈𝑛 𝐴 and 𝑦−1 ∈+
𝑛 𝐴 ⟹ 𝑥𝑦−1 ∈+

(𝑚∧𝑛)
𝐴 (by the 

multiplication condition). Thus, 𝑥𝑦−1 ∈+
(𝑚∧𝑛)

𝐴 as 

required. 

Conversely, assume that for any 𝑥, 𝑦 ∈ 𝑋 such that 

𝑥 ∈𝑛 𝐴 and 𝑦 ∈𝑚 𝐴, we have 𝑥𝑦−1 ∈+
(𝑚∧𝑛)

. We need to 

show that 𝐴 satisfies the multiplication and inverse 

conditions of a multigroup. Now take 𝑦 = 𝑥. Then, 

𝑥 ∈𝑛 𝐴 ⟹ 𝑥𝑥−1 = 𝑒 ∈+
𝑛 𝐴, where 𝑒 is the identity 

element . Hence, 𝑥−1 ∈+
𝑛 𝐴. Thus, the inverse condition 

is satisfied.  

Now, for any 𝑥, 𝑦 ∈ 𝑋, we know from the hypothesis, 

that 𝑥𝑦−1 ∈+
(𝑚∧𝑛)

𝐴. Sincethe group operation is 

closeand the inverse condition holds, then 

multiplication condition also holds. 

Definition 6 (Hierarchical decomposition of 
multisets) Let 𝑀 be a mutiset over a set 𝑋, then the 
set 𝑀𝑟 =  {𝑥 ∈ 𝑋: 𝑥 ∈+

𝑟 𝑀} is called 𝑟-level reference 
of 𝑀 where  𝑟 is the position of the reference set when 
all the reference sets (the empty set inclusive) are 
arranged in a descending order using the non-proper 
containment relation ⊇. In this case, the set 𝑀𝑟 for 
each 𝑟 is known as an 𝑟-reference set. 

Proposition 2 

Let M be a multiset over a group X. The r-level reference 

sets 𝑀𝑟 in the hierarchical decomposition of multiset M 

are subgroups of X. 

Proof 

Since 𝑋 is a group, we need to show that for any 

𝑥, 𝑦 ∈ 𝑀𝑟, the element 𝑥𝑦−1 also belongs to 𝑀𝑟. 

Since 𝑥, 𝑦 ∈ 𝑀𝑟, it means that 𝑥 ∈+
𝑟 𝑀 and 𝑦 ∈+

𝑟 𝑀. 

By the definition of a multigroup  

𝑥 ∈𝑚 𝐴 ∧ 𝑦 ∈𝑛 𝐴 ⟹ 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐴                             (3) 

Since both 𝑥 and 𝑦 appear at least 𝑟 times in 𝑀, we 

have that 𝑚, 𝑛 ≥ 𝑟. Therefore, 𝑚 ∧ 𝑛 ≥ 𝑟. Thus, 

𝑥𝑦−1 ∈+
(𝑚∧𝑛)

𝑀 ⟹ 𝑥𝑦−1 ∈+
𝑟 𝑀                              (4) 

. This shows that 𝑥𝑦−1 ∈ 𝑀𝑟. 

 

Defnition 7 Let 𝐴 be a multigroup over a group 𝑋. 

Define 𝐴∗ and 𝐴∗ as 

𝐴∗ = {𝑥 ∈ 𝑋: 𝑥 ∈𝑚 𝐴 ∧ 𝑒 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛} 

and 

𝐴∗ = {𝑥 ∈ 𝑋: 𝑥 ∈𝑚 𝐴 ⟹ 𝑚 > 0} 

 

Proposition 3 Let 𝐴 be a multigroups over a group 𝑋 

then 𝐴∗ and 𝐴∗ are submultigroups of 𝐴. 

Proof 

A is a subgroup, the identity element 𝑒 of the group 𝑋 

is also in 𝐴 with some multiplicity 𝑛. By the definition 

of 𝐴∗, for any 𝑥 ∈ 𝐴∗, 𝑥 ∈𝑚 𝐴 and 𝑒 ∈𝑛 𝐴 imply 𝑚 =

𝑛. Hence, the identity element 𝑒 satisfies the condition 

and is in 𝐴∗. 

Take any 𝑥, 𝑦 ∈ 𝐴∗. Then 𝑥 ∈𝑚 𝐴 and 𝑦 ∈𝑛 𝐴 imply 

𝑚 = 𝑛. Since 𝐴 is a multigroup, the product 𝑥𝑦−1 must 

also be in 𝐴 with multiplicity at least (𝑚 ∧ 𝑛), which in 

this case is equal to 𝑚 since 𝑚 = 𝑛. Thus, 𝑥𝑦−1 ∈ 𝐴∗. 

Therefore, 𝐴∗ is a subgroup of  𝐴. 

Since 𝐴 is a multigroup and 𝑒 is the identity, 𝑒 must be 

present in 𝐴 with a positive multiplicity. Hence, 𝑒 ∈

𝐴∗. 

Take any 𝑥, 𝑦 ∈ 𝐴∗. Then  

𝑥 ∈𝑚 𝐴 and 𝑦 ∈𝑛 𝐴 imply 𝑚 ≥ and 𝑛 > 0. Since 𝐴 is 

a multigroup, the product 𝑥𝑦−1 must be in 𝐴 with 

multiplicity at least (𝑚 ∧ 𝑛), which is strictly positive. 

Therefore, 𝑥𝑦−1 ∈ 𝐴∗. Therefore, 𝐴∗ is a subgroup of 

𝐴. 

Proposition 4 A multiset 𝐴 is a multigroup over a 

group 𝑋 if and only if the following properties are 

satisfied: 

i. 𝐴 ∘ 𝐴 ⊆ 𝐴; 

ii. 𝐴−1 ⊆ 𝐴 
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Proof 

Assume that 𝐴 is a multigroup over a group 𝑋. Now for 

any 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ∈𝑚 𝐴 and 𝑦 ∈𝑛 , 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐴. 

This implies that the product of any two elements from 𝐴 

is still in 𝐴 with at least the minimum multiplicity. 

Therefore, 𝐴 ∘  𝐴 ⊆ 𝐴. 

Also, for any 𝑥 ∈ 𝑋 such that 𝑥 ∈𝑚 𝐴, 𝑥−1 ∈+
𝑚. This 

means that the inverse of any element from 𝐴 is also in 𝐴 

with the same multiplicity, hence, 𝐴−1 ⊆ 𝐴 

Conversely, since the first condition states that the 

product of any two elements from 𝐴 is still in 𝐴, it 

satisfies the multiplicity condition of a multigroup. The 

second condition states that the inverse of any element in 

𝐴 is also in 𝐴, satisfying the inverse ondition of a 

multigroup. 

 

Proposition 5 A multiset𝐴 is a multigroup over a group 𝑋 

if and only if the following properties are satisfied 𝐴 ∘

𝐴−1 ⊆ 𝐴. 

Proof 

Assume that 𝐴 is a multigroup over a group 𝑋. By the 

definition of a multigroup, For any 𝑥, 𝑦 ∈ 𝑋 such that 

𝑥 ∈𝑚 𝐴 and 𝑦 ∈𝑛, 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐴. This implies that the 

product of any element from 𝐴 and the inverse of any 

other element from 𝐴 is still in 𝐴 with at least the 

minimum multiplicity. Therefore, 𝐴 ∘ 𝐴−1 ⊆ 𝐴. 

Conversely, Assume that the given property holds: that is, 

𝐴 ∘ 𝐴−1 ⊆ 𝐴. Since this condition states that the product 

of any element form 𝐴 is still in 𝐴, it satisfies the 

multiplication condition of a multigroup. Furthermore, the 

inverse condition of a multigroup states that for any 

𝑥 ∈𝑚 𝐴, the inverse 𝑥−1 ∈+
𝑚, which follows from the fact 

that the set is closed under taking inverses. 

 

Proposition 6 Let 𝐴 and 𝐵 be multigroups over a group 

𝑋. Then 𝐴 ∘ 𝐵 is a multigroup over 𝑋 if and only if 𝐴 ∘

𝐵 = 𝐵 ∘ 𝐴. 

Proof 

Assume 𝐴 ∘ 𝐵 is a multigroup, it must satisfy the 

multiplication condition and the invese condition. By 

the multiplication condition for multigroups: For any 

𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ∈𝑚 𝐴 ∘ 𝐵 and 𝑦 ∈𝑛 𝐴 ∘ 𝐵, 

𝑥𝑦 ∈+
(𝑚∧𝑛) (𝐴 ∘ 𝐵) . Similarly, since 𝐵 ∘ 𝐴 is a 

multigroup under the same conditions, 𝑦𝑥 ∈+
(𝑚∧𝑛) (𝐵 ∘

𝐴). Since 𝑥𝑦 = 𝑦𝑥 for any 𝑥, 𝑦 ∈ 𝑋 then 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴. 

Conversely, assume 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴. If the multigroup 

product is commutative, then both multiplication and 

inverse conditions hold symmetrically for 𝐴 ∘ 𝐵. 

Thus, 𝐴 ∘ 𝐵 is closed under multiplication and 

inverse conditions. Hence, 𝐴 ∘ 𝐵 is a multigroup 

over 𝑋. 

 

Proposition 7 Let 𝐴 and 𝐵 be multigroups over a 

group 𝑋. Then 𝐴 ∩ 𝐵 is a multigroup over 𝑋 

Proof 

For any 𝑥 ∈𝑚 (𝐴 ∩ 𝐵) and 𝑦 ∈𝑛 (𝐴 ∩ 𝐵) since 

𝑥 ∈𝑚 𝐴and 𝑥 ∈𝑚 𝐵, and  𝑦 ∈𝑛 𝐴 and 𝑦 ∈𝑛 𝐵, by the 

multiplication condition for multigroups, 

𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐴and 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐵                                         (5)  

Thus: 

𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐴 ∩ 𝐵                                               (6) 

Hence, the multiplication condition holds. For any 

𝑥 ∈𝑚 (𝐴 ∩ 𝐵), since 𝑥 ∈𝑚 𝐴 and 𝑥 ∈𝑚 𝐵, by the 

inverse condition for multigroups, 𝑥−1 ∈+
𝑚 𝐴 and 

𝑥−1 ∈+
𝑚 𝐵. Thus 

𝑥−1 ∈+
𝑚 (𝐴 ∩ 𝐵)                                                         (7) 

Hence 𝐴 ∩ 𝐵 is a multigroup over 𝑋. 

Next, we show the case is not true for union. 

Consider the cyclic group 𝑋 = {𝑒, 𝑎, 𝑏, 𝑐}  where 𝑒 is 

the identity element and the group operation is as 

follows: 

𝑎2 = 𝑒, 𝑏2 = 𝑒, 𝑐2 = 𝑒, 

𝑎𝑏 = 𝑐, 𝑎𝑐 = 𝑏, 𝑏𝑐 = 𝑎, 

𝑏𝑎 = 𝑐, 𝑐𝑎 = 𝑏, 𝑐𝑏 = 𝑎, 

𝑒𝑒 = 𝑒, 𝑒𝑎 = 𝑎, 𝑒𝑏, 𝑏, 𝑒𝑐 = 𝑐 

Consider the multigroups 𝐴 = {𝑒, 𝑎, 𝑎, 𝑏} and 𝐵 =

{𝑒, 𝑏, 𝑏, 𝑐} over 𝑋. With the above information we 

are now ready to state and prove the next 

proposition. 

 
Remark 1 It is worth noting here that 𝐴 ∪ 𝐵 is not 

necessarily a multigroup. To see this consider the 

multigroups 𝐴 and 𝐵 over the group 𝑋 as in the 

above proposition. Consider their union 𝐴 ∪ 𝐵 =

{𝑒, 𝑎, 𝑎, 𝑏, 𝑏, 𝑐}. For the union to be a multigroup it 

must satisfy the multiplication condition: For any 

𝑥 ∈𝑚 (𝐴 ∪ 𝐵) and 𝑦 ∈𝑛 (𝐴 ∪ 𝐵), 

𝑥𝑦 ∈+
(𝑚∧𝑛) (𝐴 ∪ 𝐵)                                                       (8) 

However, consider 𝑎 and 𝑏 from 𝐴 ∪ 𝐵. 𝑎 ∈2 (𝐴 ∪

𝐵) and 𝑏 ∈2 (𝐴 ∪ 𝐵). However, 𝑎𝑏 = 𝑐 ∈1 (𝐴 ∪ 𝐵). 

Hence, 

𝑎𝑏 ∉+
(𝑚∧𝑛) (𝐴 ∪ 𝐵)                                                       (9) 

Thus, the multiplication condition is not satisfied. 
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Definition 8 Let 𝐴 and 𝐵 be multigroups over a group 

𝑋. Then 𝐴 is a submultigroup of 𝐵 denoted 𝐴 ⊆ 𝐵if 

𝑚 ≤ 𝑛 ∀𝑥 ∈ 𝑋 such that 𝑥 ∈𝑚 𝐴 and 𝑥 ∈𝑛 𝐵. 

 

Example 2 Let 𝑋 be the cyclic group of order 4: 𝑋 =

{𝑒, 𝑎, 𝑎2, 𝑎3} under the multiplication modulo 4, where 

𝑒 is the identity element. Consider the multigroups 

𝐴 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎3} and 𝐵 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎3, 𝑎3}. Since 

the multiplicity of every element in 𝐴 is less or equal 

to that in 𝐵, then 𝐴 ⊆ 𝐵. Moreover, 𝐵 is a multigroup 

based on definition. 

In Propositions 8 we present the results that establish 

the equivalence between the properties of multigroup 

based on conjugation of elements. 

 

Proposition 8 Let 𝐴 be a multiset over a set 𝑋. Then 

the following assertions are equivalent: 

i. 𝑥𝑦 ∈𝑚 𝐴 ∧ 𝑦𝑥 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛, ∀𝑥, 𝑦 ∈ 𝑋 

ii. 𝑥𝑦𝑥−1 ∈𝑚 𝐴 ∧ 𝑦 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛, ∀𝑥, 𝑦 ∈ 𝑋 

Proof: 

To prove (i) ⟹ (ii): 

Assume 𝑥𝑦𝑥−1 ∈𝑚 𝐴 ∧ 𝑦 ∈𝑛 𝐴. We know that 𝑥𝑦𝑥−1 =

(𝑥𝑦)𝑥−1. Putting𝑦𝑥−1 in place of 𝑦 in (i) we get: 

𝑥(𝑦𝑥−1) ∈𝑚 𝐴 ∧ (𝑦𝑥−1)𝑥 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛                (10) 

This simplifies to  

𝑥(𝑦𝑥−1) ∈𝑚 𝐴 ∧ 𝑦 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛                              (11) 

To prove (ii) ⟹ (i): Assume 𝑥𝑦𝑥−1 ∈𝑚 𝐴 ∧ 𝑦 ∈𝑛 𝐴 ⟹

𝑚 = 𝑛. The statement essentially says that the 

multiplicity of an element 𝒚 remains the same when 

conjugated by any element 𝒙, i.e., 𝑥(𝑦𝑥−1) has the 

same multiplicity as 𝒚 in the multiset 𝐴. In particular, 

if 𝑥𝑦 and 𝑦𝑥 have the same multiplicity, it suggests 

that the multiset structure respects some form of 

symmetry under element swapping. Hence, 𝑥𝑦 ∈𝑚 𝐴 ∧

𝑦𝑥 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛, ∀𝑥, 𝑦 ∈ 𝑋. 

In Propositions 9 we present the results that establish 

the equivalence between the properties of multigroup 

based on product of their elements. 

 

Proposition 9 Let 𝐴 be a multiset over a set 𝑋. Then 

the following assertions are equivalent: 

i. 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴, for all multisets 𝐵 over 𝑋 

ii. 𝑥𝑦 ∈𝑚 𝐴 ∧ 𝑦𝑥 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛, ∀𝑥, 𝑦 ∈ 𝑋 

 

Proof: 

(i) ⟹ (ii) 

Assume 𝑥𝑦 ∈𝑚 𝐴 ∧ 𝑦𝑥 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛, ∀𝑥, 𝑦 ∈ 𝑋. 

Consider any multiset 𝐵 over 𝑋 

 By the definition of the product of two multisets:  

𝐴 ∘ 𝐵 = {𝑥𝑦: 𝑥 ∈+
𝑝

𝐴, 𝑦 ∈+
𝑞

𝐵} 

𝐵 ∘ 𝐴 = {𝑦𝑥: 𝑦 ∈+
𝑞

𝐵, 𝑥 ∈+
𝑝

𝐴} 

By hypothesis, the multiplicity of the product 𝑥𝑦 

and 𝑦𝑥 is the same, it follows that: 

𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴                                                                  (12) 

(ii) ⟹ (i) 

Assume 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴, for all multisets 𝐵 over 𝑋. 

Choose an element 𝑦 ∈ 𝐵 and form a singleton 

multiset {𝑦}. Now 

𝐴 ∘ {𝑦} = {𝑦} ∘ 𝐴                                      (13) 

This means 

{𝑥𝑦 ∶ 𝑥 ∈+
𝑚 𝐴} = {𝑦𝑥 ∶ 𝑥 ∈+

𝑛 𝐴}                        (14) 

Hence, 𝑥𝑦 ∈𝑚 𝐴 ∧ 𝑦𝑥 ∈𝑛 𝐴 ⟹ 𝑚 = 𝑛, ∀𝑥, 𝑦 ∈ 𝑋 

 

CONCLUSION 

In this study, we have extended classical group theory 

into the realm of multisets, introducing and formalizing 

the concept of multigroups. By utilizing Singh's 

dressed epsilon notation, which denotes that an element 

belongs to a multiset at least once, we have analyzed 

multisets and some𝑟-level reference sets and their 
intrinsic subgroup properties. 

Through the propositions and proofs presented, we 

established the foundational properties of multigroups, 

showing the conditions under which a multiset 

qualifies as a multigroup. Our exploration of 

multigroup operations, including multiplication, 

inversion, intersection, and union, revealed the 

nuanced ways in which these operations preserve or 

alter multigroup structures.  

The incorporation of the dressed epsilon notation has 

been instrumental in extending the applicability of 
group theory to multisets, allowing for flexible 

expression multiplicities objects. This advancement not 

only bridges the gap between traditional group theory 

and multiset theory but also opens avenues for practical 

applications in areas where multiblicities of objects is 

significant. This work paves the way for future 

research into the applications of multigroups in 

computational mathematics, data analysis, and other 

related fields.  
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