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ABSTRACT 
In the fields of reliability engineering, survival analysis, and lifetime data 

modeling, accurately representing the failure times and life durations of 

systems, components, and organisms is a central concern. Traditional lifetime 

distributions—such as the exponential, Weibull, and gamma distributions—

have been widely used due to their mathematical tractability and 

interpretability. However, these classical models often struggle to capture the 

complexity of real-world data, particularly when hazard rate behaviors vary, 

including increasing, decreasing, bathtub-shaped, or unimodal patterns. 

Although the Weibull distribution is popular for its flexibility, it may not 

sufficiently model datasets where the hazard function deviates from its typical 

monotonic form. Similarly, while the gamma distribution is effective in many 

stochastic and queuing contexts, it lacks the versatility to represent certain tail 
behaviors and multimodal characteristics observed in practice. To address these 

limitations, statisticians have developed hybrid and compound distributions 

that merge features from multiple distributions, enhancing both flexibility and 

applicability. One such development is the Weibull-Gamma distribution, 

derived by mixing the Weibull and Gamma distributions. The first four 

moments about the origin, as well as the mean, were calculated for this new 

distribution. Derived expressions also include the coefficient of variation, 

skewness, kurtosis, and index of dispersion. In addition, the moment-

generating function, characteristic function, and Laplace transform were 

established. Key reliability functions—such as the survival function, hazard 

rate function, and mean residual life—were also derived. Parameter estimation 
was carried out using the Maximum Likelihood Estimation (MLE) method. 

The goodness-of-fit of the proposed distribution was evaluated against several 

existing related models using criteria such as the Akaike Information Criterion 

(AIC), Corrected Akaike Information Criterion (AICC), and Bayesian 

Information Criterion (BIC). These comparisons were based on real-world 

datasets. The results demonstrated that the Weibull-Gamma distribution 

outperformed the competing models, making it a promising alternative for 

modeling real-life lifetime data. 
 

INTRODUCTION 

The Weibull and Gamma distributions are widely 
recognized for their applications in reliability analysis, 

lifetime modeling, and event-based data analysis. The 

Weibull distribution, with its shape and scale parameters, 

is particularly useful for modeling survival and failure 

times (Umar & Yahya, 2021). Similarly, the Gamma 

distribution, often applied to model waiting times or life 

durations, is governed by its shape and rate parameters. 

These two distributions, when combined into the Weibull-

Gamma (WG) distribution, provide a powerful framework  

 

 
 

 

 

for modeling data where events are influenced by both 

multiplicative degradation and additive randomness, 
making it especially useful in complex lifetime data 

modeling (Umar, Jimoh, & Yahya, 2019). The 

Weibull-Gamma distribution is notable for its ability to 

model varying hazard functions, making it particularly 

well-suited for data that exhibits both increasing and 

decreasing failure rates. Its versatility has been 

demonstrated in fields such as healthcare, engineering, 

and economics (Yahya & Umar, 2024). To achieve 

this, statisticians have developed and refined various  

 

 
 

 

 

 

 
Journal of Basics and Applied Sciences Research (JOBASR)  

ISSN (print): 3026-9091, ISSN (online): 1597-9962 

Volume 3(3) May 2025 

DOI: https://dx.doi.org/10.4314/jobasr.v3i3.17   

             

 

How to cite this article: Suleiman, G. O., Jimoh, K. and Suleman, I. (2025). A New Weibull-Gamma Distribution: Theory, 
Estimation and Applications. Journal of Basics and Applied Sciences Research, 3(3), 154-167. 
https://dx.doi.org/10.4314/jobasr.v3i3.17               

 

154 

mailto:issasuleman@unimaid.edu.ng
mailto:ganeey19@gmail.com
mailto:jimkaminsha@alhikmah.edu.ng
https://dx.doi.org/10.4314/jobasr.v3i3.17
https://dx.doi.org/10.4314/jobasr.v3i3.17


 

A New Weibull-Gamma Distribution … Suleiman et al.  

 
JOBASR2025 3(3): 154-167 

 

 

155 

lifetime distributions (Amiru et al, 2025; Manu et al, 

2023; Olalekan et al, 2021) that can accommodate the 

diverse patterns of hazard functions observed in real-

world phenomena. The most general form of the gamma 

distribution is the three-parameter Generalized Gamma 
(GG) distribution (Stacy, 1962). The distribution is 

suitable for modeling data having different types of 

hazard rate functions; increasing, decreasing, bathtub 

shaped and unimodal, which makes it particularly useful 

for estimating individual hazard functions. The GG 

distribution has been used in several research areas such 

as engineering, hydrology and survival analysis (Shanker 

& Shukla, 2017). Gamma distribution is very versatile 

and gives useful presentations of many physical 

situations. It is perhaps the most applied statistical 

distribution in analysis of reliability (Nadarajah, 2008). 

The GG model, having Weibull, Gamma and Exponential 
distributions as special sub-models among others, is a 

very popular distribution for modeling lifetime data and 

for modeling phenomenon with monotone failure rates. It 

plays a very important role in statistical inferential 

problems. A generalization of the Generalized Gamma 

(GGG) distribution, which includes the three-parameter 

generalized gamma (GG) distribution, two-parameter 

Weibull and gamma distributions, and exponential 

distribution, has been suggested and investigated by 

Shanker & Shukla (2019). The behavior of the hazard rate 

function of the distribution has been discussed. The 
estimation of the parameters of the distribution has been 

explained using the method of maximum likelihood. The 

goodness-of-fit of the distribution has been discussed and 

the fit was quite satisfactory over GG, Gamma, Weibull, 

and Exponential distributions. 

The Lindley distribution was originally introduced by 

Lindley (1958) in the context of Fiducial and Bayesian 

Statistics. In the context of reliability studies, Ghitany, 

Atieh & Nadarajah (2008) among others studied in great 

detail the Lindley distribution; a detailed study on its 

various properties, parameter estimation, and application 

showing its superiority over Gamma, Exponential and 
Weibull distributions. This Lindley distribution has been 

modified, extended and generalized along with its 

applications to different fields of knowledge 

(Abouammoh, Alshangiti&Ragab, 2015; Alkarni, 2015; 

Bhati, Malik &Vaman, 2015; Ghitany, Al-Mutairi, 

Balakrishnan& Al-Enezi, 2013; Parai, Liyanage, & 

Oluyede, 2015; Sharma, Singh, Singh & Agiwal, 2015; 

Wang, 2013; Warahena-Liyanage & Pararai, 2014, among 

others). This is because there are situations in which the 

original Lindley distribution may not be suitable from a 

theoretical or applied point of view (Ghitany, et al., 
2013). So, to obtain a more flexible density function than 

Lindley. 

In the realm of reliability engineering, survival analysis, 

and lifetime data modeling, the accurate representation of 

failure times and life durations of systems, components, 

and organisms is central concern. Traditional lifetime 

distributions such as the exponential, Weibull, and 

gamma models have been extensively used due to their 

mathematical tractability and interpretability. However, 

these classical models often fall short when dealing 
with complex data that exhibit various types of hazard 

rate behaviours such as increasing, decreasing, 

bathrub-shaped, or unimodal patterns.  The Weibull 

distribution, despite its popularity and flexibility, may 

not adequately model data sets where the shape of the 

hazard function deviates from its typical monotonic 

behaviour. Similarly, while the gamma distribution 

provides a good fit in many stochastic and queuing 

processes, it lacks the versatility to capture certain tail 

behaviors and multimodal characteristics observed in 

real-life data. To bridge this gap, statisticians have 

proposed hybrid and compounded distributions that 
combine the properties of two or more distributions to 

enhance flexibility and applicability. The Weibull-

Gamma distribution, a newly proposed compound 

lifetime distribution, seeks to address the limitations of 

existing models by integrating the strengths of the 

Weibull and gamma distributions. This distribution 

introduces additional parameters that allow it to better 

model various hazard rate shapes and improve 

goodness of fit for empirical data. Despite its 

promising theoretical potential, this distribution is still 

in its early stages of development, and several critical 
questions remain unanswered: (1) what are the 

theoretical properties of the Weibull-Gamma 

distribution (e.g., moments, entropy, hazard rate 

function)? (2) How does this distribution perform 

compared to existing lifetime models in terms of 

flexibility and fit? (3) what estimation techniques can 

be effectively applied to this distribution, and how 

efficient are these methods? (4) can the Weibull-

Gamma distribution be effectively used in real-world 

applications used as biomedical studies, industrial 

reliability data, or actuarial science?. Addressing these 

question is crucial for validating the Weibull-Gamma 
distribution as a reliable tool in statistical modeling. 

Therefore, this research aims to thoroughly, investigate 

the theoretical foundation, mathematical properties, 

estimated and applicability of the new lifetime model, 

the Weibull-Gamma distribution, to determine its 

viability and usefulness in practice. 

 

MATERIALS AND METHODS 

The Weibull distribution is defined by its probability 

density function as;  

𝑓1(𝑥; 𝛽, 𝜃) = 𝛽𝜃(𝜃𝑥)
𝛽−1 exp(−(𝜃𝑥)𝛽) ; 𝑥 > 0, 𝛽

> 0, 𝜃 > 0                                                                   (1) 
The Gamma distribution (Stacy, 1962; Artemiou, 2009; 

Shanker & Shukla, 2019) is defined by its probability 

density function as; 
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𝑓2(𝑥; 𝛼, 𝜃) =
θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
; 𝑥 > 0, 𝛼 > 0, 𝜃

> 0                                                                                (2) 

The New Weibull-Gamma Distribution  

The mixture of both the 𝑓1(𝑥; 𝛽, 𝜃) 𝑎𝑛𝑑 𝑓2(𝑥;𝛼, 𝜃) in (1) 

and (2) with the mixing parameter 𝜋 yielded another 

density function of the form; 

𝑓(𝑥; 𝛽, 𝛼, 𝜃)
= 𝜋. 𝑓1(𝑥; 𝛽, 𝜃)
+ (1 − 𝜋)𝑓2(𝑥; 𝛼, 𝜃)                                                           (3) 

The mixing parameter 𝜋 is defined by  

𝜋 =
𝜃

𝜃 + Γ(𝛼)
  𝑤𝑖𝑡ℎ (1 − 𝜋)

=
Γ(𝛼)

𝜃 + Γ(𝛼)
 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜋 + (1 − 𝜋)

= 1  
Thus, substituting the density functions 𝑓1(𝑥; 𝛽, 𝜃) given 

by (1) and 𝑓2(𝑥; 𝛼, 𝜃) given by (2) into (3), we have new 

density function given by 

𝑓(𝑥; 𝛽, 𝛼, 𝜃)

=
𝜃

𝜃 + Γ(𝛼)
. 𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)

+
Γ(𝛼)

𝜃 + Γ(𝛼)
.
θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
                             (4) 

After the little algebra, we have its final form as; 

𝑓(𝑥; 𝛽, 𝛼, 𝜃)

=
𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)]

𝜃 + Γ(𝛼)
   

                                                                                          (5) 
The density function in (5) is called the new Weibull-

Gamma (WG) density function. 

To confirm the Weibull-Gamma Distribution is a valid 

probability density 
To verify that the new Weibull-Gamma (WG) distribution 

in (5) satisfies the properties of a true probability density 

function (pdf), we must check two key properties of valid 

probability density function:  

(1) Non-negativity:𝑓(𝑥; 𝛽, 𝛼, 𝜃) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 0 

 (2) Normalization:we need to verify that:  

∫ 𝑓(𝑥; 𝛽, 𝛼, 𝜃)
∞

0

𝑑𝑥

= 1.  𝐻𝑒𝑛𝑐𝑒, 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡: 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑓(𝑥; 𝛽, 𝛼, 𝜃) 

∫ 𝑓(𝑥; 𝛽, 𝛼, 𝜃)
∞

0

𝑑𝑥

= ∫
𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1exp (−𝜃𝑥)]

𝜃 + Γ(𝛼)
𝑑𝑥

∞

0

 

Since integration is linear, we can split the integral: 

⇒
𝜃

𝜃 + Γ(𝛼)
[𝛽𝜃∫ (𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥

∞

0

+∫ (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)
∞

0

𝑑𝑥]                                             (6) 

First component: Weibull Distribution integral: 

𝛽𝜃∫ (𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) 𝑑𝑥
∞

0

(𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑢

= (𝜃𝑥)𝛽 ⇒ (𝜃𝑥) = 𝑢
1
𝛽 ⇒ 𝑑𝑥

=
1

𝛽𝜃
𝑢
1
𝛽
−1
𝑑𝑢) 

⇒ 𝛽𝜃∫ (𝑢
1
𝛽)

𝛽−1

exp(−𝑢)
1

𝛽𝜃
𝑢
1
𝛽
−1
𝑑𝑢

∞

0

= ∫ exp(−𝑢)
∞

0

𝑑𝑢

= 1                                                       (7) 
Second component: Gamma Distribution integral: 

∫ (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)
∞

0

𝑑𝑥   (𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑢 = (𝜃𝑥)

⇒ 𝑥 =
𝑢

𝜃
⇒ 𝑑𝑥 =

𝑑𝑢

𝜃
) 

⇒ ∫ (𝑢)𝛼−1 exp(−𝑢) .
𝑑𝑢

𝜃

∞

0

=
1

𝜃
∫ (𝑢)𝛼−1exp(−𝑢)
∞

0

𝑑𝑢

=
Γ(𝛼)

𝜃
                                                                               (8) 

Putting (7) and (8) in (6), we get: 

∫ 𝑓(𝑥; 𝛽, 𝛼, 𝜃)
∞

0

𝑑𝑥 =
𝜃

𝜃 + Γ(𝛼)
[1 +

Γ(𝛼)

𝜃
]

=
𝜃

𝜃 + Γ(𝛼)
.
𝜃 + Γ(𝛼)

𝜃
= 1                                          (9) 

Conclusion: since 𝑓(𝑥; 𝛽, 𝛼, 𝜃) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≥ 0 and 

integrates to 1, the WG density function, 𝑓(𝑥; 𝛽, 𝛼, 𝜃) 
in (5) is valid. 

The Cumulative Distribution Function of the new 

Weibull-Gamma (WG) Distribution 
The cumulative Distribution function (CDF) of a new 

WG density function is given by: 

𝐹(𝑥; 𝛽, 𝛼, 𝜃)
= 𝜋. 𝐹1(𝑥; 𝛽, 𝜃)
+ (1
− 𝜋)𝐹2(𝛼, 𝜃)                                                                     (10) 
Step 1: Compute 𝐹1(𝑥; 𝛽, 𝜃) [CDF of 𝑓1(𝑥; 𝛽, 𝜃)is 

density function of Weibull distribution] 

The cumulative distribution function for a Gamma 

distribution is given by 

𝐹1(𝑥; 𝛽, 𝜃)
= 1
− exp(−(𝜃𝑥)𝛽)                                                               (11) 

Step 2: Compute 𝐹2(𝑥; 𝛼, 𝜃) [CDF of 𝑓2(𝑥; 𝛼, 𝜃)is 
density function of Gamma distribution] 

The cumulative distribution function for a Gamma 

distribution is given by the lower incomplete gamma 

function 

𝐹2(𝑥; 𝛼, 𝜃) =   
𝛾(𝛼, 𝜃𝑥)

Γ(𝛼)
                                             (12) 
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where 𝛾(𝛼, 𝜃𝑥) is the lower incomplete gamma function: 

𝛾(𝛼, 𝜃𝑥)

= ∫ 𝑡𝛼−1 exp(−𝑡)
𝜃𝑥

0

𝑑𝑡                                                (13) 

Substituting for 𝐹1(𝑥; 𝛽, 𝜃) 𝑎𝑛𝑑 𝐹2(𝑥; , 𝛼, 𝜃) in (10), we 

get: 

𝐹(𝑥; 𝛽, 𝛼, 𝜃)

=
𝜃(1 − exp(−(𝜃𝑥)𝛽))

𝜃 + Γ(𝛼)

+
Γ(𝛼)

𝜃 + Γ(𝛼)
.
𝛾(𝛼, 𝜃𝑥)

Γ(𝛼)
                                              (14) 

After simplification, the final expression for the 

cumulative distribution function is 

𝐹(𝑥; 𝛽, 𝛼, 𝜃)

=
𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
                   (15) 

The Graphs of Probability Density and Cumulative 

Distribution Functions of the new Weibull-Gamma 

(WG) Distribution 
The density plot of the proposed model WGD at various 

values of 𝛼, 𝜃, 𝑎𝑛𝑑 𝛽 is shown in figure 1. It can be 

observed that: 

1. Effect of 𝛼 (Shape Parameter): 

 When 𝛼 increases, it generally shifts the 

peak of the PDF to the right and 
increases the spread of the distribution. 

This means the distribution becomes 

more spread out (e.g., more likely to 

take larger values). 

 For smaller values of 𝛼, the PDF will 

peak sharply and decay more 

quickly. 

 In the CDF, a higher 𝛼 will cause the 

cumulative probability to rise more 

gradually over the range of 𝑋. 

2. Effect of 𝜃 𝑎𝑛𝑑 𝛽 (Scale Parameters): 

 Larger values of 𝜃 𝑎𝑛𝑑 𝛽 spread out 

the distribution and decrease the 
peak of the PDF. It also shifts the 

distribution rightward, making larger 

values of 𝑋 more probable. 

 In the CDF, increasing 𝜃 𝑎𝑛𝑑 𝛽 will 

cause the curve to rise more 

gradually, meaning it takes longer for 

the cumulative probability to reach 1. 

The graphs of the Probability Density Function (PDF) 

and Cumulative Distribution Function (CDF) of the 

Weibull-Gamma distribution for different values of 

𝛽, 𝛼 𝑎𝑛𝑑 𝜃 are shown in Figures 1 

 
Figure 1: The graph of the p.d.f and c.d.f. of the WG distribution at different values of 𝜷,𝜶 𝐚𝐧𝐝 𝜽 

 

Specific Effects on the Plot: 

i. For 𝜶 = 𝟏, 𝜷 = 𝟏,:  
a. This combination will gives the 

Exponential distribution. The PDF 

will have a simple exponential decay, 

and the CDF will rise steadily as 𝑥 

increases. 

ii. For 𝜶 = 𝟐, 𝜷 = 𝟏:  
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a. This combination will give the Lindley 

distribution. The PDF will be more 

spread out compared to the Exponential 

distribution, and the CDF will rise more 

slowly, indicating a more gradual 

accumulation of probability over 𝑥. 

iii. For 𝜷 = 𝟏:  

a.  With increasing in both 𝛼 𝑎𝑛𝑑 𝜃 causes 

the distribution to have a heavier tail. 

The PDF will decay slower, and the 

CDF will increase more gradually, 

showing that larger values of 𝑥 are 

more probable. 

iv. For 𝜶 = 𝟏,:  
a. With both 𝜃 and 𝛽 increasing, the PDF 

becomes more spread out, with a slower 

decay at the right tail. The CDF will 

rise more gradually, as the probability 

accumulates more slowly with respect 

to 𝑥. 

From the density plot, it is clear that density plot of WG 

can take different shapes. For smaller 𝛼, the PDF peaks 

quickly and decays more rapidly while the CDF rises 

more sharply. As 𝛼and 𝛽 increase, the peak shifts to 

the right, and the tail becomes more spread out, with 

slower decay. Larger 𝛼, 𝛽, and 𝜃 values will cause the 

CDF to rise more gradually, indicating that values of 𝑥 

take longer to accumulate probability.It can be 

observed that the PDF for higher values of 𝛼or 𝛽 

spreads out, and the CDF for these same values rises 

more gradually. 

Moment Generating Function 

The moment generating function (MGF) of the new 

WG distribution can be derived from the standard 

definition of MGF as follows. The MGF of random 

variable 𝑥 having the pdf 𝑓(𝑥; 𝛽, 𝛼, 𝜃) is given by: 

𝑀𝑋(𝑡) = 𝔼(𝑒
𝑡𝑋)

= ∫ 𝑒𝑡𝑋
∞

0

𝑓(𝑥; 𝛽, 𝛼, 𝜃)𝑑𝑥                                           (16) 

Now, with 𝑓(𝑥; 𝛽 𝛼, 𝜃) being the WG density function 

in (5), then putting (5) in (16), the MGF of 𝑥 is 

obtained as follows: 

 

𝑀𝑋(𝑡) = 𝔼(𝑒
𝑡𝑋) = ∫ 𝑒𝑡𝑋

∞

0

𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1exp (−𝜃𝑥)]

𝜃 + Γ(𝛼)
𝑑𝑥                  

=
𝜃

𝜃 + Γ(𝛼)
. ∫ 𝑒𝑡𝑋𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥

∞

0

+
Γ(𝛼)

𝜃 + Γ(𝛼)
∫ 𝑒𝑡𝑋

θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

                            (17)  

Step 1: The first component, 𝑋1, follows the Weibull distribution:   

𝑀𝑋1
(𝑡) = ∫ 𝑒𝑡𝑋𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥

∞

0

=∑
𝑡𝑘

𝑘!

∞

𝑘=0

Γ (
(𝑘 + 𝛽)
𝛽

)

𝜃𝑘
                                                       (18) 

Step 2: The second component, 𝑋2 follows the Gamma distribution:  

𝑀𝑋2
(𝑡) = ∫ 𝑒𝑡𝑋

θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

= (1 −
𝑡

𝜃
)
−𝛼

, 𝑓𝑜𝑟 𝑡 < 𝜃                                                            (19) 

Putting (18) and (19) in (17), we get: 

𝑀𝑋(𝑡) =
𝜃

𝜃 + Γ(𝛼)
.∑

𝑡𝑘

𝑘!

∞

𝑘=0

Γ (
(𝑘 + 𝛽)
𝛽

)

𝜃𝑘
+

Γ(𝛼)

𝜃 + Γ(𝛼)
(1 −

𝑡

𝜃
)
−𝛼

 

=
𝜃

𝜃 + Γ(𝛼)
.∑

(
𝑡
𝜃
)
𝑘

𝑘!

∞

𝑘=0

(
𝑘

𝛽
) ! +

Γ(𝛼)

𝜃 + Γ(𝛼)
(
𝜃

𝜃 − 𝑡
)
𝛼

                                                                             (20) 

  

Laplace Transform of the new Weibull-Gamma (WG) Distribution 

The Laplace transform of a probability density function (PDF), 𝑓(𝑥) is defined as: 

ℒ𝑋(𝑠) = 𝔼[𝑒
−𝑠𝑋] = ∫ 𝑒−𝑠𝑥

∞

0

𝑓(𝑥)𝑑𝑥                                                                                                                   (21) 

Now, with 𝑓(𝑥; 𝛽 𝛼, 𝜃) being the WG density function in (5), then putting (5) in (16), the MGF of 𝑥 is obtained as 

follows: 

ℒ𝑋(𝑠) = 𝔼(𝑒
−𝑠𝑋) = ∫ 𝑒−𝑠𝑋

∞

0

𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1exp (−𝜃𝑥)]

𝜃 + Γ(𝛼)
𝑑𝑥                  

=
𝜃

𝜃 + Γ(𝛼)
.∫ 𝑒−𝑠𝑋𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥

∞

0

+
Γ(𝛼)

𝜃 + Γ(𝛼)
∫ 𝑒−𝑠𝑋

θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

                       (22)  
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Step 1: The first component, 𝑋1, follows the Weibull distribution:   

ℒ𝑋1(𝑠) = ∫ 𝑒−𝑠𝑋𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥
∞

0

=∑
(−𝑠)𝑘

𝑘!

∞

𝑘=0

Γ(
(𝑘 + 𝛽)
𝛽

)

𝜃
𝑘+𝛽
𝛽

                                             (23) 

Step 2: The second component, 𝑋2 follows the Gamma distribution:  

ℒ𝑋2(𝑠) = ∫ 𝑒−𝑠𝑋
θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

= (1 +
𝑠

𝜃
)
−𝛼

= (
𝜃

𝜃 + 𝑠
)
𝛼

                                                      (24) 

Putting (23) and (24) in (22), we get: 

ℒ𝑋(𝑡) =
𝜃

𝜃 + Γ(𝛼)
.∑

(−𝑠)𝑘

𝑘!

∞

𝑘=0

Γ (
(𝑘 + 𝛽)
𝛽

)

𝜃
𝑘+𝛽
𝛽

+
Γ(𝛼)

𝜃 + Γ(𝛼)
(
𝜃

𝜃 + 𝑠
)
𝛼

                                                                   (25) 

 

Characteristic Function 

The characteristic function (CF) of the new WG distribution can be derived from the standard definition of CF as 

follows. The CF of random variable 𝑥 having the pdf 𝑓(𝑥; 𝛽, 𝛼, 𝜃) is given by: 

Φ𝑋(𝑡) = 𝔼(𝑒
𝑖𝑡𝑋) = ∫ 𝑒𝑖𝑡𝑋

∞

0

𝑓(𝑥; 𝛽, 𝛼, 𝜃)𝑑𝑥                                                                                                 (26) 

Now, with 𝑓(𝑥; 𝛽 𝛼, 𝜃) being the WG density function in (5), then putting (5) in (26), the CF of 𝑥 is obtained as 

follows: 

Φ𝑋(𝑡) = 𝔼(𝑒
𝑖𝑡𝑋) = ∫ 𝑒𝑖𝑡𝑋

∞

0

𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1exp (−𝜃𝑥)]

𝜃 + Γ(𝛼)
𝑑𝑥                  

=
𝜃

𝜃 + Γ(𝛼)
. ∫ 𝑒𝑖𝑡𝑋𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥

∞

0

+
Γ(𝛼)

𝜃 + Γ(𝛼)
∫ 𝑒𝑖𝑡𝑋

θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

                        (27)  

Step 1: The first component, 𝑋1, follows the Weibull distribution:   

Φ𝑋1(𝑡) = ∫ 𝑒𝑖𝑡𝑋𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥
∞

0

=∑
(𝑖𝑡)𝑘

𝑘!

∞

𝑘=0

Γ(
(𝑘 + 𝛽)
𝛽

)

𝜃
𝑘+𝛽
𝛽

                                                  (28) 

Step 2: The second component, 𝑋2 follows the Gamma distribution:  

Φ𝑋2(𝑡) = ∫ 𝑒𝑖𝑡𝑋
θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

= (
𝜃

𝜃 − 𝑖𝑡
)
𝛼

                                                                               (29) 

Putting (28) and (29) in (27), we get: 

Φ𝑋(𝑡) =
𝜃

𝜃 + Γ(𝛼)
.∑

(𝑖𝑡)𝑘

𝑘!

∞

𝑘=0

Γ(
(𝑘 + 𝛽)
𝛽

)

𝜃
𝑘+𝛽
𝛽

+
Γ(𝛼)

𝜃 + Γ(𝛼)
(

𝜃

𝜃 − 𝑖𝑡
)
𝛼

                                                                   (30) 

The Moments and Related Measures 

The 𝑟𝑡ℎ moment about origin, 𝜇𝑟
′ , is defined as; 

𝜇𝑟
′ = ∫ 𝑥𝑟

∞

0

𝑓(𝑥; 𝛽, 𝛼, 𝜃)𝑑𝑥                                                                                                                                       (31) 

Then substituting (5) in (31), the 𝑟𝑡ℎ moment about origin of the WG distribution is obtained as follows: 

𝜇𝑟
′ = 𝔼(𝑥𝑟) = ∫ 𝑥𝑟

∞

0

𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1exp (−𝜃𝑥)]

𝜃 + Γ(𝛼)
𝑑𝑥                  

=
𝜃

𝜃 + Γ(𝛼)
. ∫ 𝑥𝑟𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥

∞

0

+
Γ(𝛼)

𝜃 + Γ(𝛼)
∫ 𝑥𝑟

θ(𝜃𝑥)𝛼−1exp (−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

(32)  

Step 1: The first component, 𝑋1, follows the Weibull distribution:   

𝐸1(𝑋
𝑟) = ∫ 𝑥𝑟𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽)𝑑𝑥

∞

0

=
1

𝜃𝑟
Γ(
𝑟

𝛽
+ 1)                                                       (33) 

Step 2: The second component, 𝑋2 follows the Gamma distribution:  

𝐸2(𝑋
𝑟) = ∫ 𝑥𝑟

θ(𝜃𝑥)𝛼−1 exp(−𝜃𝑥)

𝛤(𝛼)
𝑑𝑥

∞

0

=
Γ(𝛼 + 𝑟)

𝜃𝑟Γ(𝛼)
                                                                  (34) 

Putting (33) and (34) in (32), we get: 
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𝜇𝑟
′ =

𝜃

𝜃 + Γ(𝛼)
.
1

𝜃𝑟
Γ(
𝑟

𝛽
+ 1) +

Γ(𝛼)

𝜃 + Γ(𝛼)
.
Γ(𝛼 + 𝑟)

𝜃𝑟Γ(𝛼)
                                                                    (35) 

After simplification of (35) 

𝜇𝑟
′ = 𝔼(𝑋𝑟) =

1

𝜃𝑟
[
𝜃Γ(

𝑟
𝛽
+ 1)

𝜃 + Γ(𝛼)
+
Γ(𝛼 + 𝑟)

𝜃 + Γ(𝛼)
] =

𝜃Γ(
𝑟
𝛽
+ 1) + Γ(𝛼 + 𝑟)

𝜃𝑟(𝜃 + Γ(𝛼))
 

Hence, the 𝑟𝑡ℎ moment about origin is given as; 

𝜇𝑟
′ =

𝜃Γ(
𝑟
𝛽
+ 1) + Γ(𝛼 + 𝑟)

𝜃𝑟(𝜃 + Γ(𝛼))
; 𝑟 = 1, 2, 3, 4                                                                                         (36) 

The first four moments about the origin are: substituting for 𝑟 = 1, 2,3, 4 in (36) yields the first four moments 

about the origin of the WG distribution as: 

𝜇1
′ =

𝜃Γ(
1
𝛽 + 1

) + Γ(𝛼 + 1)

𝜃1(𝜃 + Γ(𝛼))
=

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
;  𝜇2

′ =
𝜃Γ(

2
𝛽 + 1

) + Γ(𝛼 + 2)

𝜃2(𝜃 + Γ(𝛼))
=
𝜃 (
2
𝛽
) ! + (𝛼 + 1)!

𝜃2{𝜃 + (𝛼 − 1)!}
 

𝜇3
′ =

𝜃Γ(
3
𝛽 + 1

) + Γ(𝛼 + 3)

𝜃3(𝜃 + Γ(𝛼))
=
𝜃 (
3
𝛽
) ! + (𝛼 + 2)!

𝜃3{𝜃 + (𝛼 − 1)!}
;   𝜇4

′ =
𝜃Γ(

4
𝛽 + 1

) + Γ(𝛼 + 4)

𝜃4(𝜃 + Γ(𝛼))
=
𝜃 (
4
𝛽
) ! + (𝛼 + 3)!

𝜃4{𝜃 + (𝛼 − 1)!}
 

The moments about the mean: Using the relationship between moments, the moments about the mean of the 

distribution are obtained as; 𝜇𝑟 = 𝐸[(𝑋 − 𝜇)
𝑟] 

The first moment about the mean is always zero: 𝜇1 = 𝐸[(𝑋 − 𝜇)
1] = 𝐸(𝑋) − 𝜇 = 𝜇 − 𝜇 = 0  

The second central moment (variance): 𝜇2 = 𝐸[𝑋
2] − (𝐸[𝑋])2 = 𝜇2

′ − 𝜇2 

𝜇2 =
𝜃 (
2
𝛽
) ! + (𝛼 + 1)!

𝜃2{𝜃 + (𝛼 − 1)!}
− {

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
}

2

=
1

𝜃2

[
 
 
 𝜃 (

2
𝛽
) ! + (𝛼 + 1)!

{𝜃 + (𝛼 − 1)!}
− (

𝜃 (
1
𝛽
) ! + 𝛼!

{𝜃 + (𝛼 − 1)!}
)

2

]
 
 
 

           (37) 

The third central moment (Skewness Numerator): 𝜇3 = 𝜇3
′ − 3𝜇𝜇2

′ + 2𝜇3 

𝜇3 =
𝜃 (
3
𝛽
) ! + (𝛼 + 2)!

𝜃3{𝜃 + (𝛼 − 1)!}
− 3(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)(

𝜃 (
2
𝛽
) ! + (𝛼 + 1)!

𝜃2{𝜃 + (𝛼 − 1)!}
) + 2(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)

3

         (38) 

The 4th central moment (Kurtosis Numerator):𝜇4 = 𝜇4
′ − 4𝜇𝜇3

′ + 6𝜇2𝜇2
′ − 3𝜇4 

𝜇4 =

[
 
 
 
 
 
 
 𝜃 (

4
𝛽
) ! + (𝛼 + 3)!

𝜃4{𝜃 + (𝛼 − 1)!}
− 4(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)(

𝜃 (
3
𝛽
) ! + (𝛼 + 2)!

𝜃3{𝜃 + (𝛼 − 1)!}
)

+6(
𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)

2

(
𝜃 (
2
𝛽
) ! + (𝛼 + 1)!

𝜃2{𝜃 + (𝛼 − 1)!}
)− 3(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)

4

]
 
 
 
 
 
 
 

                                     (39) 

The coefficient of variation (CV), Skewness, √𝛽1, Kurtosis,𝛽2, and index of dispersion,𝛾, are thus presented as 

follows: 

𝐶. 𝑉 =
𝜎

𝜇
=

√((𝜃 + (𝛼 − 1)!) (𝜃 (
2
𝛽
) ! + (𝛼 + 1)!) − (𝜃 (

1
𝛽
) ! + 𝛼!)

2

)

𝜃 (
1
𝛽
) ! + 𝛼!

                                                     (39𝑏) 
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√𝛽1 =
𝜇3

𝜇2

3
2

=

𝜃 (
3
𝛽
) ! + (𝛼 + 2)!

𝜃3{𝜃 + (𝛼 − 1)!}
− 3(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)(

𝜃 (
2
𝛽
) ! + (𝛼 + 1)!

𝜃2{𝜃 + (𝛼 − 1)!}
)+ 2(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)

3

{
 

 
1
𝜃2

[
 
 
 𝜃 (

2
𝛽
) ! + (𝛼 + 1)!

{𝜃 + (𝛼 − 1)!}
− (

𝜃 (
1
𝛽
) ! + 𝛼!

{𝜃 + (𝛼 − 1)!}
)

2

]
 
 
 

}
 

 

3
2

       (40) 

𝛽2 =
𝜇4
𝜇2
2 =

[
 
 
 
 
 
 
 𝜃 (

4
𝛽
) ! + (𝛼 + 3)!

𝜃4{𝜃 + (𝛼 − 1)!}
− 4(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)(

𝜃 (
3
𝛽
) ! + (𝛼 + 2)!

𝜃3{𝜃 + (𝛼 − 1)!}
)

+6(
𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)

2

(
𝜃 (
2
𝛽
) ! + (𝛼 + 1)!

𝜃2{𝜃 + (𝛼 − 1)!}
) − 3(

𝜃 (
1
𝛽
) ! + 𝛼!

𝜃{𝜃 + (𝛼 − 1)!}
)

4

]
 
 
 
 
 
 
 

{
 

 
1
𝜃2

[
 
 
 𝜃 (

2
𝛽
) ! + (𝛼 + 1)!

{𝜃 + (𝛼 − 1)!}
− (

𝜃 (
1
𝛽
) ! + 𝛼!

{𝜃 + (𝛼 − 1)!}
)

2

]
 
 
 

}
 

 
2                                   (41) 

𝛾 =
𝜎2

𝜇1
′ =

(𝜃 (
2
𝛽
) ! + (𝛼 + 1)!) (𝜃 + (𝛼 − 1)!) − (𝜃 (

1
𝛽
) ! + 𝛼!)

2

𝜃 (𝜃 (
1
𝛽
) ! + 𝛼!) (𝜃 + (𝛼 − 1)!)

                                                                               (42) 

Survival Function: The survival function 𝑺(𝒙)represents the probability that the random variable 𝑋 takes a value 

greater than 𝑥. In other words, 𝑆(𝑥)gives us the likelihood that 𝑋 "survives" beyond a particular threshold 𝑥. 

 As 𝒙 → 𝟎: The survival function 𝑆(𝑥) is expected to be close to 1, as the probability that 𝑋 exceeds 0 is 

very high (since 𝑋starts from 0). 

 As 𝒙 increases: The survival function will decrease because the probability that 𝑋 exceeds 𝑥 decreases as 𝑥 

increases. It will approach 0 as 𝑥 → ∞. 

The Survival Function (SF), also known as the reliability Function is given by: 

𝑆(𝑥) = 1 − 𝐹(𝑥; 𝛽, 𝛼, 𝜃), 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑥)  𝑖𝑠 𝐶𝐷𝐹                                                                                   (43) 
Putting (15) in (43), we get survival function of the new WG distribution as follows: 

𝑆(𝑥) = 1 −
𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
=
𝜃 exp(−(𝜃𝑥)𝛽) + Γ(𝛼) − 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
                                         (44)  

Hazard Function 

The Hazard Function (Failure Rate function) is given by: 

ℎ(𝑥; 𝛽, 𝛼, 𝛽) =
𝑓(𝑥; 𝛽, 𝛼, 𝜃)

1 − 𝐹(𝑥; 𝛽, 𝛼, 𝜃)
, 𝑤ℎ𝑒𝑟𝑒 1 − 𝐹(𝑥; 𝛽, 𝛼, 𝜃) = 𝑆(𝑥) 𝑖𝑠 𝑠𝑟𝑣𝑖𝑣𝑎𝑙 𝑓𝑛𝑐𝑡𝑖𝑜𝑛                                    (45) 

Substituting for (5) and (44) in (45), we get hazard function of the new WG distribution as follows: 

ℎ(𝑥; 𝛽, 𝛼, 𝛽) =
𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1exp (−𝜃𝑥)]

𝜃 exp(−(𝜃𝑥)𝛽) + Γ(𝛼) − 𝛾(𝛼, 𝜃𝑥)
                                                                  (46) 

 
The hazard function gives the instantaneous rate of failure 

(or hazard) at time 𝑥. It can provide insight into the shape 

and behavior of the distribution: 

 If ℎ(𝑥) is constant over time, this indicates a 

memoryless or exponential distribution. 

 If ℎ(𝑥) is increasing over time, it indicates that 

the failure rate increases as 𝑥 increases, which is 

characteristic of distributions with "heavy" 
tails or distributions where the likelihood of 

an event increases over time. 

If ℎ(𝑥) is decreasing over time, it indicates that the 

failure rate decreases as 𝑥 increases, which is common 

in systems where the risk of failure reduces as time 

progresses. 
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Figure 2: Graphs of the Survival and Hazard Functions of WGD at different values of 𝜷, 𝜶 𝐚𝐧𝐝 𝜽 

For small 𝑥, the survival function starts close to 1. This is 

because the probability that 𝑋 exceeds a small value is 

high.As 𝑥 increases, the survival function decreases, as 

the probability of 𝑋 exceeding 𝑥 becomes smaller. The 

rate of decrease depends on the model parameters 𝛼 and 

𝛽. Higher values of these parameters lead to slower decay 

in the survival function (indicating that the random 

variable 𝑋 has a longer "tail"). Larger values of 𝛼, 

𝛽makes the survival function decay more slowly. This 

means that the "tail" of the distribution is heavier, and 

there is a higher chance that 𝑋 takes larger values. This 

plot visually captures how the survival probability 

changes with different parameter values and show you the 
impact of the WG distribution’s tail behavior. 

Increasing Hazard Function: If the hazard function 

ℎ(𝑥) increases as 𝑥 increases, it indicates that the 

likelihood of "failure" increases as time goes on. This is 

often the case in distributions that model systems with 

aging or wear-out processes, where the risk increases over 

time. 

Decreasing Hazard Function: If ℎ(𝑥) decreases as 𝑥 

increases, it implies that the "failure rate" decreases over 

time. This may indicate systems that become more 

stable or resilient as time progresses. 

By plotting the hazard function for different parameter 

values 𝛼, 𝛽, and 𝜃, gives insights into how these 

parameters influence the failure rate over time 

Order Statistics: Order statistics deals with properties 

and applications of ranked random variables. When it 
comes to studying natural problems related to flood, 

longevity, breaking strength, atmospheric pressure, 

wind etc., using order statistics becomes essential in 

the sense that the problem of interest in these cases 

reduces to that of extreme observations. Here, we 

provide the density of the 𝑘𝑡ℎ order statistic𝑥𝑘:𝑛, say 

𝑔(𝑦𝑘:𝑛;𝜙), in a random sample of size 𝑛 from a new 

WG distribution. The expressions for rth raw moment, 

mean, and variance of the first and 𝑛𝑡ℎ order statistics 

are also provided. 

The probability density function of first-Order 
Statistics: The pdf of first-order statistic, denoted as 

𝑋(1), represents the minimum value in a sample of size 

𝑛 drawn from a given probability density function 

(PDF). The distribution of 𝑋(1)is characterized by its 

PDF and CDF, which we derive below. 

Step 1: The CDF of 𝑋(1), denoted as 𝐹𝑋(1)(𝑥) is given by: 

𝐹𝑋(1)(𝑥) = 1 − [S(x)]
n, 𝑤ℎ𝑒𝑟𝑒 𝑆(𝑥) = 1 − 𝐹(𝑥)                                                                (47)  

Substituting (44) in (47), we have CDF of first-order of new WG distribution as follows: 

𝐹𝑋(1)(𝑥) = 1 − [
𝜃 exp(−(𝜃𝑥)𝛽) + Γ(𝛼) − 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]

n

                                                                (48) 

Step 2: The PDF of 𝑋(1), is obtained by differentiating 𝐹𝑋(1)(𝑥): 

𝑓𝑋(1)(𝑥) = n[S(x)]
n−1𝑓(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥; 𝛽, 𝛼, 𝜃) 𝑖𝑠 𝑛𝑒𝑤 𝑃𝐷𝐹 𝑜𝑓 𝑊𝐺                                     (49)  

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Survival Function of the WGD for Different Parameters

x

S
u

rv
iv

a
l 
F

u
n

c
ti
o

n

β  1,   2,   1
β  2,   2,   1

β  1,   3,   1
β  1,   2,   2
β  1.5,   2.5,   1

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

Hazard Function of the WGD for Different Parameters

x
H

a
z
a

rd
 F

u
n

c
ti
o

n

β  1,   2,   1
β  2,   2,   1

β  1,   3,   1
β  1,   2,   2
β  1.5,   2.5,   1



 

A New Weibull-Gamma Distribution … Suleiman et al.  

 
JOBASR2025 3(3): 154-167 

 

 

163 

Substituting (44) and (5) in (49), we have PDF of first-order of new WG distribution as follows: 

𝑓𝑋(1)(𝑥) = n [
𝜃 exp(−(𝜃𝑥)𝛽) + Γ(𝛼) − 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]

n−1

{
𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)]

𝜃 + Γ(𝛼)
}   (50) 

The probability density function of 𝒌𝒕𝒉-Order Statistics: The pdf of 𝑘𝑡ℎ order statistic, denoted as 𝑋(𝑘), 

represents the 𝑘𝑡ℎ smallest value in random sample of size 𝑛 drawn from a given probability density function 

(PDF). The distribution of 𝑋(𝑘)is characterized by its PDF and CDF, which we derive below. 

Step 1: The cumulative distribution function (CDF) of 𝑋(𝑘), denoted as 𝐹𝑋(𝑘)(𝑥) is given by: 

𝐹𝑋(𝑘)(𝑥) = P(X(𝑘) ≤ x) =∑(
𝑛
𝑗)

𝑛

𝑗=𝑘

[𝐹(𝑥)]𝑗[𝑆(𝑥)]𝑛−𝑗 ;   𝑤ℎ𝑒𝑟𝑒 𝑆(𝑥) = 1 − 𝐹(𝑥)& 𝐹(𝑥)𝑖𝑠 𝐶𝐷𝐹                 (51)  

Substituting (44) and (15) in (51), we have CDF of 𝑘𝑡ℎ order of new WG distribution as follows: 

𝐹𝑋(𝑘)(𝑥) =∑(
𝑛
𝑗)

𝑛

𝑗=𝑘

[
𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]

𝑗

[
𝜃 exp(−(𝜃𝑥)𝛽) + Γ(𝛼) − 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]

𝑛−𝑗

                        (52) 

Step 2: The PDF of 𝑋(𝑘), is obtained by differentiating 𝐹𝑋(𝑘)(𝑥): 

𝑓𝑋(𝑘)(𝑥) = n(
𝑛 − 1
𝑘 − 1

) [F(x)]k−1[S(x)]n−k𝑓(𝑥),                                                                                                            (53)  

Substituting (44), (5) and (15) in (53), we have PDF of 𝑘𝑡ℎ order of new WG distribution as follows: 

𝑓𝑋(𝑘)(𝑥) =

{
 
 

 
 n(

𝑛 − 1
𝑘 − 1

) [
𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]

k−1

[
𝜃 exp(−(𝜃𝑥)𝛽) + Γ(𝛼) − 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]

𝑛−𝑘

× (
𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)]

𝜃 + Γ(𝛼)
)

}
 
 

 
 

 

= {
n(𝑛 − 1
𝑘 − 1

)

(𝜃 + Γ(𝛼))
𝑛(
(𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥))

𝑘−1
(𝜃 exp(−(𝜃𝑥)𝛽) + Γ(𝛼) − 𝛾(𝛼, 𝜃𝑥))

𝑛−𝑘

× (𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)])
)}           (54) 

The probability density function of 𝒏𝒕𝒉 Order Statistics: The pdf of 𝑛𝑡ℎ order statistic, denoted as 𝑋(𝑛), 

represents the minimum value in a sample of size 𝑛 drawn from a given probability density function (PDF). The 

distribution of 𝑋(𝑛)is characterized by its PDF and CDF, which we derive below. 

Step 1: The CDF of 𝑋(𝑛), denoted as 𝐹𝑋(𝑛)(𝑥) is given by: 

𝐹𝑋(𝑛)(𝑥) = P(𝑋(𝑛) ≤ x) = [F(x)]
n, 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝐶𝐷𝐹 𝑜𝑓 𝑛𝑒𝑤 𝑊𝐺 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                     (55)  

Substituting (15) in (55), we have CDF of first-order of new WG distribution as follows: 

𝐹𝑋(𝑛)(𝑥) = [
𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]

n

                                                                                                         (56) 

Step 2: The PDF of 𝑋(𝑛), is obtained by differentiating 𝐹𝑋(𝑛)(𝑥): 

𝑓𝑋(𝑛)(𝑥) = n[F(x)]
n−1𝑓(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥; 𝛽, 𝛼, 𝜃) 𝑖𝑠 𝑛𝑒𝑤 𝑃𝐷𝐹 𝑜𝑓 𝑊𝐺                                                      (57)  

Substituting (15) and (5) in (57), we have PDF of 𝑘𝑡ℎ order of new WG distribution as follows: 

𝑓𝑋(𝑛)(𝑥) = n [[
𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥)

𝜃 + Γ(𝛼)
]]

n−1

{
𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)]

𝜃 + Γ(𝛼)
} 

= 𝑛
(𝜃(1 − exp(−(𝜃𝑥)𝛽)) + 𝛾(𝛼, 𝜃𝑥))

𝑛−1

(𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1 exp(−𝜃𝑥)])

(𝜃 + Γ(𝛼))
𝑛                  (58) 

 Parameters Estimation  

Maximum Likelihood Estimate 

Let 𝑥𝑖  , 𝑖 =  1, 2, 3,…  𝑛, be a random sample of size 𝑛 from the Weibull-Gamma distribution.  

Step 1: Define the likelihood function: 

Given a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 ,from the new Weibull-Gamma (WG) distribution, the likelihood function, 𝐿  
is defined by; 
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𝐿(𝛽, 𝛼, 𝜃) =∏𝑓(𝑋𝑖|𝛽, 𝛼, 𝜃)

𝑛

𝑖=1

                                                                                                                              (59) 

Putting (5) in (59), the likelihood function of the WG distribution is obtained as; 

𝐿(𝛽, 𝛼, 𝜃) =∏(
𝜃[𝛽𝜃(𝜃𝑥)𝛽−1 exp(−(𝜃𝑥)𝛽) + (𝜃𝑥)𝛼−1exp (−𝜃𝑥)]

𝜃 + Γ(𝛼)
)

𝑛

𝑖=1

 

         = (
𝜃

𝜃 + Γ(𝛼)
)
𝑛

(𝛽𝜃)𝑛∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

exp [−∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

] +∑(𝜃𝑥𝑖)
𝛼−1

𝑛

𝑖=1

 + exp [−∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

]                        (60) 

Step 2: Construct the log-likelihood function: we take the natural log-of likelihood function in (60) 

ℓ(𝛽, 𝛼, 𝜃) = log {(
𝜃

𝜃 + Γ(𝛼)
)
𝑛

(𝛽𝜃)𝑛∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

exp [−∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

] +∑(𝜃𝑥𝑖)
𝛼−1

𝑛

𝑖=1

 + exp [−∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

]} 

= 2𝑛 log 𝜃 − 𝑛 log(𝜃 + Γ(𝛼)) + 𝑛 log 𝛽 −∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

+ (𝛼 − 1) log∑(𝜃𝑥𝑖)

𝑛

𝑖=1

−∑(𝜃𝑥𝑖)

𝑛

𝑖=1

                                    (61) 

Differentiating (61) partially with respect to 𝛽, we have; 

𝜕ℓ(𝛽, 𝛼, 𝜃)

𝜕𝛽
= 0 ⇒

𝑛

𝛽
−∑(𝜃𝑥𝑖)

𝛽

𝑛

𝑖=1

log∑(𝜃𝑥𝑖)

𝑛

𝑖=1

= 0 ⇒ 𝛽∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

=
𝑛

log∑ (𝜃𝑥𝑖)
𝑛
𝑖=1

                                            (62) 

Furthermore, differentiating (61) partially with respect to 𝛼, we have; 

𝜕ℓ(𝛽, 𝛼, 𝜃)

𝜕𝛼
= 0 ⇒ −

𝑛

𝜃 + Γ(𝛼)
. Γ′(𝛼) + log∑(𝜃𝑥𝑖)

𝑛

𝑖=1

= 0 

⇒ 𝜓(𝑥) = (
𝜃 + Γ(𝛼)

𝑛Γ(𝛼)
)∑(𝜃𝑥𝑖)

𝑛

𝑖=1

 ;     𝑤ℎ𝑒𝑟𝑒 
Γ′(𝛼)

Γ(𝛼)
= 𝜓(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝛼                            (63) 

Finally, differentiating (61) partially with respect to 𝜃, we have; 

𝜕ℓ(𝛽, 𝛼, 𝜃)

𝜕𝜃
=
2𝑛

𝜃
−

𝑛

𝜃 + Γ(𝛼)
−
𝛽

𝜃
.∑(𝜃𝑥𝑖)

𝛽

𝑛

𝑖=1

+
𝛼 − 1

𝜃
−∑𝑥𝑖

𝑛

𝑖=1

= 0 [𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑎𝑙𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑏𝑦 𝜃(𝜃 + Γ(𝛼))] 

⇒ 2𝑛(𝜃 + Γ(𝛼)) − 𝑛𝜃 − 𝛽(𝜃 + Γ(𝛼))∑(𝜃𝑥𝑖)
𝛽

𝑛

𝑖=1

+ (𝛼 − 1)(𝜃 + Γ(𝛼)) − 𝜃(𝜃 + Γ(𝛼))∑𝑥𝑖

𝑛

𝑖=1

= 0          (64) 

 

The partial derivatives of the likelihood function in (34) 

with respect to parameters 𝛼 and 𝜃 cannot be solved 

analytically because they are not in closed forms. These 

equations can be solved using any numerical method such 

as the Newton-Raphson method (Henningsen & Toomet, 

2011), the Nelder-Mead method (Nelder & Mead, 1965), 

BFGS method (Fletcher, 1987), SANN method (Belisle, 

1992), and the like. The Newton-Raphson method is 
however employed in this paper with the use of the 

“optim” function in 𝑅 package (R Core Team, 2018) and 

Henningsen & Toomet, (2011) to solve the equations 

iteratively. 

Applications  

In this section, the goodness-of-fit of the new WG 

distribution is discussed with an application to real-life 

datasets. The parameters of the distribution were solved 

using the MLE method while the goodness-of-fit was 

evaluated using the Akaike Information Criterion (AIC), 

Akaike Information Criterion Corrected (AICC), 

Bayesian Information Criterion (BIC) and –2logLik 

with their respective statistics given below. 

𝐴𝐼𝐶 = −2 ln 𝐿 + 2𝑘                                             (65) 

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
                                         (66) 

𝐵𝐼𝐶 = −2 ln 𝐿 + 𝑘 ln 𝑛                                    (67) 
where 𝑘 is the number of parameters and 𝑛 is the 

sample size. The distribution that has a lower value of 

these criteria is judged to be the best among others. 

Data Description 

Dataset 1: This dataset consists of the Exceedances of 

flood peaks (in m3/s) of the Wheaton Rivernear 
Carcross in Yukon Territory, Canada for the years 

1958-1984 reported in Akinsete & Famoye (2008). 

Dataset 2: This represents an uncensored dataset 

corresponding to Remission times (in months) of a 

random sample of 118 Bladder cancer patients reported 

in Lee and Wang (2003). 
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RESULTS AND DISCUSSION 

Table 1: Parameters Estimation and Goodness-of-Fit Test Results of the WGD and other Existing 

distributions for the Exceedances of Wheat on River flood data 

 
EXP. GAMMA WD LINDLEY E-Gamma WGD 

ML Estimates 𝜃=0.0819 �̂�=0.8383 𝜃=0.9296 𝜃=0.0619 �̂�=1.4616 �̂�=0.0938 

  

𝜃=0.0687 �̂�=0.1108 

 

𝜃=0.0755 �̂�=0.0160 

  

  

  

𝜃=3.1105 

-2logLik 504.256 502.689 481.902 430.051 499.012 481.425 

AIC 506.256 506.689 485.902 432.051 503.012 487.425 

AICC 506.313 506.863 486.076 432.108 503.186 487.749 

BIC 508.533 506.965 486.178 434.327 503.289 490.255 

 

Table 2: Parameters Estimation and Goodness-of-Fit Test Results of the WGD and other Existing 

distributions for the Remission times (in months) of Bladder cancer data  

 
EXP. GAMMA WD LINDLEY EXP-Gamma WGD 

ML Estimates 𝜃=0.1163 �̂�=0.3856 𝜃=1.0478 𝜃=0.1961 �̂�=1.4616 �̂�=0.0852 

  

𝜃=0.7437 �̂�=0.1046 

 

𝜃=0.1041 �̂�=1.0473 

  

  

  

𝜃=2.078 

-2logLik 743.718 743.159 728.228 839.060 742.679 721.084 

AIC 745.718 747.159 734.228 841.060 746.679 727.084 

AICC 745.753 747.263 734.422 841.095 746.783 727.187 

BIC 748.489 747.930 742.784 843.912 747.449 734.209 

 

An analysis of the remission times for the Exceedances of 

Wheaton River flood and bladder cancer datasets using 

various lifetime distributions revealed that the Weibull-

Gamma (WG) distribution provided the best fit among all 

models considered. Tables 1 and 2 present the maximum 

likelihood (ML) estimates of the parameters for each 
distribution, along with their corresponding values of -2 

log-likelihood (-2logLik), Akaike Information Criterion 

(AIC), and Bayesian Information Criterion (BIC), for 

comparative evaluation. 

For the Exceedances of Wheaton River flood data, the 

WG distribution—with its three parameters—achieved 

the lowest values of -2logLik (481.425), AIC (487.425), 

and BIC (490.255), indicating a superior model fit. 

Similarly, for the bladder cancer remission time data, the 

WG distribution again recorded the lowest values of -

2logLik (721.084), AIC (727.084), and BIC (734.209), 
confirming its robustness across different datasets. These 

low AIC and BIC values indicate not only a good fit but 

also model parsimony, which is critical in balancing 

complexity with predictive accuracy. 

Other distributions examined—including the Exponential 

Distribution (ED), Gamma Distribution (GD), Weibull 

Distribution (WD), Lindley Distribution (LD), and 

Exponential-Gamma Distribution (EGD)—showed 

comparatively higher AIC and BIC values, suggesting 

they were less suitable for modeling the remission 

times in both datasets. 

Regarding parameter estimates, the WG distribution's 

values suggest a relatively slow remission rate, which 

aligns with typical medical expectations, where 

remission times often show a gradual decline. The 

distribution's shape and scale parameters provide 
valuable insights into the underlying data structure, 

allowing for a more detailed understanding of 

remission dynamics. 

The superior performance of the WG distribution 

highlights its robustness and flexibility in modeling 

lifetime data, particularly for complex datasets such as 

cancer remission times. Its ability to accommodate 

varying hazard rate behaviors makes it well-suited for 

survival analysis where the hazard function is non-

constant. 

Moreover, the favorable AIC and BIC results 
underscore the importance of considering both model 

fit and parsimony in statistical modeling. The WG 

distribution’s effective balance between these factors 

makes it a practical and powerful tool for researchers 

and practitioners in fields such as oncology, where 

accurate modeling of survival and remission times is 

crucial for informed decision-making. 



 

A New Weibull-Gamma Distribution … Suleiman et al.  

 
JOBASR2025 3(3): 154-167 

 

 

166 

While the WG distribution demonstrated strong 

performance in this study, there remain opportunities for 

further research and development. 

 

CONCLUSION 
This paper introduced and examined the Weibull-Gamma 

(WG) distribution, a highly flexible model capable of 

capturing a wide range of data behaviors, including heavy 

tails, skewness, and varying degrees of variability, 

depending on its parameters. Due to its versatility, the 

WG distribution is well-suited for applications in 

reliability analysis, survival analysis, queuing theory, and 

financial modeling. 

The findings of this study highlight the WG distribution 

as a powerful and adaptable tool for modeling lifetime 

data. Its effectiveness was particularly evident in real-

world datasets such as cancer remission times and the 
Exceedances of Wheaton River flood data. The WG 

distribution consistently achieved superior model fit, as 

indicated by its lower AIC and BIC values compared to 

traditional distributions. These results suggest that the 

WG distribution is a valuable addition to the statistical 

modeling toolkit, especially in survival and reliability 

contexts where conventional models like the Weibull or 

Gamma distributions may fall short in capturing the data's 

underlying complexity. 

Given its promising performance, the WG distribution 

emerges as a strong candidate for modeling scenarios 
involving non-standard hazard rates or heterogeneous data 

structures. 

Future studies could investigate the sensitivity of the 

model to initial parameter estimates and explore its 

performance across datasets of varying sizes. 

Additionally, it would be beneficial to examine the 

model’s applicability to other medical data types—such 

as mortality rates or recovery times—to validate its 

generalizability. 

Another promising direction for future research involves 

extending the WG model by incorporating covariates such 

as age, treatment regimen, or genetic markers. This would 
enhance the model’s explanatory power and support the 

development of personalized treatment strategies. 

Furthermore, the creation of efficient computational tools 

and algorithms for parameter estimation in large-scale 

clinical trials would facilitate broader application of the 

WG distribution, enabling more accurate modeling across 

diverse medical and clinical datasets. Future research 

should further explore the practical applications and 

theoretical extensions of the WG distribution,  particularly 

in clinical and biomedical contexts where individualized 

treatment decisions are becoming increasingly important. 
Additionally, developing a generalized version of the 

Weibull-Gamma distribution could enhance its modeling 

capabilities and broaden its applicability to even more 

complex datasets. 
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