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ABSTRACT 
Accurate Modeling and analysis of real-world data playa vital role across 

various fields, enabling better decision-making and predictions. While it is 

widely acknowledged that “all models are wrong, but some are useful.” 

Nevertheless, researchers continuously develop, modify, extend, generalize and 

combine models with other distributionsto enhance accuracy and achieve 

significant progress. This paper introduces the Exponentiated Generalized new 

Exponential-Gamma distribution (EGnEG), a novel four parameters univariate 

continuous lifetime probability distribution that extends the new Exponential-

Gamma distribution. The proposed distribution is named the Exponentiated 

Generalized new Exponential-Gamma distribution (EGnEG). Its survival and 
hazard rate functions of the distribution were derived and analyzed visually to 

understand its properties. Graphical representations of the probability density 

function (PDF), cumulative distribution function (CDF) and hazard rate 

function illustrate the distribution’s behaviors across different parameter 

values.Additionally, Entropy measures and order statistic were determined to 

further assess its characteristics. The parameters of the EGnEG distribution 

were estimated using three different methods: Maximum Likelihood Method 

(MLE), Least Squares Estimation (LSE), and Cramer-Von-Mises Estimation 

(CVME). To assess its Goodness-of-fit, the distribution was applied to a real-

life dataset and compared with that of some existing related distributions. The 

comparison based on the values of – 2𝑙𝑜𝑔𝐿𝑖𝑘, Akaike Information Criteria 
(AIC) Bayesian Information Criteria (BIC).The results from the dataset 

indicate that the Exponentiated Generalized New Exponential-Gamma 

(EGnEG) distribution out performs other competing distributions considered in 

the study. Therefore, this new distribution is recommended as a valuable 

alternative for modeling real life datasets, offering improved flexibility and 

accuracy in statistical modeling. 
 

INTRODUCTION 

In the field of applied sciences, including engineering, 

medical sciences, actuarial science, demography, public 
health, insurance, and finance, the reliability analysis and 

modeling of lifetime data play a crucial role. Accurate 

modeling of lifetime data is fundamental for predicting 

the failure rates of systems, products, or even individuals, 

enabling informed decision-making and resource 

allocation. To achieve this, statisticians have developed 

and refined various lifetime distributions (Amiru et al, 

2025; Ibrahim et al, 2025; Olalekan et al, 2021) that can 

accommodate the diverse patterns of hazard functions 

observed in real-world phenomena. 

 

 
 

 

 

Historically, the Exponential distribution has been a 

go-to model for lifetime data due to its simplicity and 

ease of use. However, it assumes a constant hazard 
rate, which may not be suitable for many practical 

applications where the failure rate changes over time. 

This limitation has prompted the development of more 

flexible models that can capture both increasing and 

decreasing hazard rates, such as the Exponential 

Geometric (EG) distribution (Adamidis & Loukas, 

1998) and the Generalized Exponential (GE) 

distribution (Gupta & Kundu, 1999). These models, 

while more flexible, still face challenges in 

accommodating the complexities of real-world data. 
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A significant advancement in this area is the introduction 

of the Exponential-Gamma (EG) distribution, first 

proposed by Ogunwale et al. (2019). This distribution, 

derived from a mixture of the Exponential and Gamma 

distributions, provides greater flexibility in modeling 
lifetime data with varying hazard functions. Further, a 

New Exponential-Gamma distribution (Umar & Yahya, 

2021, 2019), and its extensions (Yahya & Umar, 2024 and 

2025; Umar et al, 2019a & 2019b) that have the 

Exponential distribution, Lindley (and its extensions of) 

distributions (Gupta & Kundu, 2001; Lindley, 1958; 

Nadarajah et al, 2011; Zakayau et al, 2025) as special 

cases have improved its applicability, particularly in 

modeling data with non-constant hazard functions. The 

New Exponential-Gamma distribution has been shown to 

offer better fits to real-life data than the traditional 

Exponential distribution and some of its extensions. 
However, there remains a gap in the available 

distributions that can capture more complex patterns in 

lifetime data while maintaining flexibility in their 

parameters. The existing models, although useful, still 

have limitations in dealing with specific types of data, 

particularly in accommodating complex hazard rate 

behaviors such as non-monotonic trends. This study 

addresses these limitations by extending the New 

Exponential-Gamma distribution to a more generalized 

form—Exponentiated Generalized New Exponential-

Gamma (EGnEG) distribution. 
The proposed EGnEG distribution introduces an 

additional layer of flexibility, allowing for more complex 

hazard functions and improved fitting to real-life datasets. 

By compounding the Exponentiated Exponential 

distribution with the New Exponential-Gamma 

distribution, the EGnEG distribution emerges as a four-

parameter univariate continuous distribution. This new 

model is designed to provide a more accurate and 

adaptable framework for modeling lifetime data with 

varying failure rates, offering potential advantages in both 

theoretical and applied contexts. 

The primary objective of this study is to derive the 
properties of the EGnEG distribution, explore its various 

special cases, and apply it to real datasets to demonstrate 

its effectiveness. Furthermore, this study will compare the 

performance of the EGnEG model with several 

conventional lifetime distributions, providing insights into 

its relative advantages for practical applications in diverse 

fields. Ultimately, the study aims to contribute to the 

ongoing development of more flexible and robust models 

for lifetime data analysis. The rest of the paper is 

organized as follows: Section 2 and 3 presents the model 

design, including the probability density function (PDF), 
cumulative distribution function (CDF), various 

properties, and expressions for the survival function and 

hazard rate function. Section 4 outlines the methods for 

parameter estimation. Section 5 showcases applications of 

the EGnEG model using real datasets, comparing its 

performance with several conventional lifetime 

distributions to demonstrate its relative superiority. 

Finally, Section 6 provides a concluding remark on the 

results and key findings. 

 

MATERIALS AND METHODS 

Model Design 

The Lindley distribution (Lindley, 1958) is defined by 

its probability density function as; 

𝑓(𝑥; 𝜃)
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0   (1) 

This can be expressed as  

𝑝𝑔1(𝑥; 𝜃) + 𝑞𝑔2(𝑥; 2, 𝜃)    (2) 

where 𝑔1(𝑥; 𝜃) = 𝜃𝑒−𝜃𝑥 , 𝑔2(𝑥; 2, 𝜃) = 𝜃2𝑥𝑒−𝜃𝑥 are 

the Exponential (𝜃) and Gamma (2, 𝜃)distributions 

respectively, 𝑝 =
𝜃

𝜃+1
 and 𝑞 = 1 − 𝑝. 

The corresponding cumulative density function of the 

Lindley distribution is obtained as 

𝐹(𝑥) = 1 − [1 +
𝜃𝑥

𝜃+1
] 𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0    (3) 

The Exponentiated Lindley distribution is defined by 

Nadarajah et al (2011) as; 

𝑓(𝑥; 𝜃, 𝑆) =
𝑆𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥 (1 − [1 +

𝜃𝑥

𝜃+1
] 𝑒−𝜃𝑥)

𝑆−1

; 𝑥 > 0, 𝜃 > 0, 𝑆 > 0 (4) 

The Exponentiated Exponential distribution is defined 

(Gupta & Kundu, 2001) as; 

𝑓(𝑥; 𝜃, 𝑆) = 𝑆𝜃(1 − 𝑒−𝜃𝑥)
𝑆−1

𝑒−𝜃𝑥; 𝑥 > 0, 𝑆 > 0, 𝜃 >

0     (5) 

An Exponential-Gamma distribution (Ogunwale et al, 
2019) is defined by its p.d.f as: 

𝑓(𝑥; 𝛼, 𝜃) =
𝑥𝛼−1𝜃𝛼+1𝑒−2𝜃𝑥

𝛤(𝛼)
;  𝑥 > 0, 𝛼 > 0, 𝜃 > 0   (6) 

It is expressed as the product of Exponential and 

Gamma density functions.  

That is, 𝑓(𝑥;  𝛼, 𝜃) = 𝑓(𝑥1, 𝑥2) = 𝑓(𝑥1) ∙ 𝑓(𝑥2). 
The New Exponential-Gamma distribution is defined 

by Umar & Yahya (2021): as 

𝑓(𝑥; 𝛼, 𝜃) =
𝜃

𝜃+𝛤(𝛼)
(𝜃 + 𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥;  𝑥 > 0, 𝛼 >

0, 𝜃 > 0                   (7) 

The distribution is expressed as a two components 

mixture of Exponential (𝜃) and Gamma (𝛼, 𝜃), 

generalizing the Lindley distribution in (1). 

The corresponding cumulative distribution function is 

thus obtained as: 

𝐹(𝑥; 𝛼, 𝜃) = ∫ 𝑓(𝑡; 𝛼, 𝜃)𝑑𝑡
𝑥

0
  (8) 

This implies thus, that 

𝐹(𝑥; 𝛼, 𝜃) =
1

𝜃+𝛤(𝛼)
[𝜃(1 − 𝑒−𝜃𝑥) + 𝜃𝛼𝐿]     (9) 

Where𝐿 = ∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0
 

It can be easily verified that when 𝛼 = 1, Exponential-

Gamma distribution reduces to the Exponential 

distribution, and, when 𝛼 = 2, the distribution reduces 

to the Lindley distribution (Lindley, 1958). 
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Alzaatreh et al. (2013), has introduced Beta Exponential - 

X family which has following cumulative density 

function (CDF) and probability density function (PDF), 

𝐹(𝑥;  𝛼, 𝛽, 𝜆) = 1 − 𝐼[1−𝐹(𝑥)]𝜆[𝜆(𝛽 − 1) + 1, 𝛼] (10) 

𝑓(𝑥;  𝛼, 𝛽, 𝜆) =
𝜆

𝐵(𝛼,𝛽)
𝑔(𝑥)[[1 − 𝐺(𝑥)]𝜆𝛽−1[1 −

{1 − 𝐹(𝑥)}]𝜆]
𝛼−1

   (11) 

Where, I denote incomplete beta function. For 𝛽 = 1, 

above CDF and PDF reduces to Exponentiated 
Generalized (EG) class of distribution with CDF and PDF 

as, 

𝐹(𝑥) = [1 − {1 − 𝐺(𝑥)}𝛽]
𝜆
   (12) 

And, 

𝑓(𝑥) = 𝛽𝜆𝑔(𝑥)[1 − 𝐺(𝑥)]𝛽−1[1 − {1 − 𝐺(𝑥)}𝛽]
𝜆−1

 (13) 

Telee et al., (2022) introduced Exponentiated Generalized 

Exponential Geometric (EGEG) Distribution which has a 

cumulative density function (CDF) and a probability 

density function (PDF), as 

𝐹(𝑥) = [1 − {
𝜃𝑒−𝛽𝑥

{1−(1−𝜃)𝑒−𝛽𝑥}
}
𝜆

]

𝛼

  (14) 

𝑓(𝑥) =
𝛼𝜆𝛽𝜃𝑒−𝛽𝑥

{1−(1−𝜃)𝑒−𝛽𝑥}
2 [

𝜃𝑒−𝛽𝑥

{1−(1−𝜃)𝑒−𝛽𝑥}
]
𝜆−1

[1 −

{
𝜃𝑒−𝛽𝑥

{1−(1−𝜃)𝑒−𝛽𝑥}
}
𝜆

]

𝛼−1

   (15) 

 

Exponentiated Generalized new Exponential Gamma 

(EGnEG) Distribution 

An Exponentiated version of probability density function 
is most conveniently specified in terms of the cumulative 

distribution function (CDF) (Rather & Subramanian, 2019 

and 2020, among others). 

Here, we have used CDF of new Exponential-Gamma 

distribution function G(x) as the base line distribution 

function having CDF and PDF as 

𝐺(𝑥) =
1

𝜃+𝛤(𝛼)
[𝜃(1 − 𝑒−𝜃𝑥) + 𝜃𝛼𝐿] (16) 

Where 𝐿 = ∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0
 

𝑔(𝑥) =
𝜃

𝜃+𝛤(𝛼)
(𝜃 + 𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥;  𝑥 > 0, 𝛼 > 0, 𝜃 >

0                (17) 

Substituting the density function 𝑔(𝑥) in density function 

of Exponentiated Exponential X family (15) and (16), we 

get a new density function named as Exponentiated 
Generalized new Exponential Gamma (EGnEG) 

distribution. The distribution function and density 

function of proposed model EGnEG is given as 

𝐹(𝑥) = [1 − {1 −
[𝜃(1−𝑒−𝜃𝑥)+𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

= [1 −

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

   (18) 

where 𝐿 = ∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0
 

𝑓(𝑥) =

𝛽𝜃𝜆(𝜃+𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃+𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽−1

[1 −

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

   (19) 

where, 𝑥 > 0, 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 > 0. 𝛼, 𝛽, 𝑎𝑛𝑑 𝜆 Shape 

parameters. 𝜃 is scale parameter and 𝐿 =

∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0
 

 

Special cases: 

Let 𝑋 denotes the non-negative random variable with 

𝑝𝑑𝑓 given in equation (19). We can define some other 

sub models from the proposed model as: 

1. For 𝛼 = 1, EGnEG reduces to the 

Exponentiated Generalized Exponential 

distribution as 

𝐹(𝑥) = [1 − {1 −
[𝜃(1 − 𝑒−𝜃𝑥) + 𝜃𝐿]

𝜃 + 1
}

𝛽

]

𝜆

= [1 − {
[𝜃𝑒−𝜃𝑥 + 1 − 𝜃𝐿]

𝜃 + 1
}

𝛽

]

𝜆

 

𝑓(𝑥) = 𝛽𝜃𝜆𝑒−𝜃𝑥 {
[𝜃𝑒−𝜃𝑥 + 1 − 𝜃𝐿]

𝜃 + 1
}

𝛽−1

[1

− {
[𝜃𝑒−𝜃𝑥 + 1 − 𝜃𝐿]

𝜃 + 1
}

𝛽

]

𝜆−1

 

Where 𝐿 = ∫ 𝑒−𝜃𝑡𝑑𝑡
𝑥

0
 

2. For 𝛼 = 2, EGnEG reduces to the 

Exponentiated Generalized Lindley 

distribution as 

𝐹(𝑥) = [1 − {1 −
[𝜃(1 − 𝑒−𝜃𝑥) + 𝜃2𝐿]

𝜃 + 1
}

𝛽

]

𝜆

= [1 − {
[𝜃𝑒−𝜃𝑥 + 1 − 𝜃2𝐿]

𝜃 + 1
}

𝛽

]

𝜆

 

𝑓(𝑥) =
𝛽𝜃2𝜆(1 + 𝑥)𝑒−𝜃𝑥

𝜃 + 1
{
[𝜃𝑒−𝜃𝑥 + 1 − 𝜃2𝐿]

𝜃 + 1
}

𝛽−1

[1

− {
[𝜃𝑒−𝜃𝑥 + 1 − 𝜃2𝐿]

𝜃 + 1
}

𝛽

]

𝜆−1

 

Where 𝐿 = ∫ 𝑡𝑒−𝜃𝑡𝑑𝑡
𝑥

0
 

3. For 𝛼 = 1, 𝜆 = 1 and 𝛽 =  1 , EGnEG 

reduces to the Exponential distribution. 

4. For 𝛼 = 2, 𝜆 = 1 and 𝛽 =  1 , EGnEG 

reduces to the Lindley distribution in (1) 

(Lindley, 1958). 

5. For  𝜆 = 1 and 𝛽 =  1,the proposed model 

reduces to the new Exponential Gamma 

distribution. 
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6. For 𝛼 = 1 and 𝛽 =  1 , EGnEG reduces to the 

Exponentiated Exponential distribution (Gupta & 

Kundu, 2001). 

7. For 𝛼 = 2 and 𝛽 =  1 , EGnEG reduces to the 

Exponentiated Lindley distribution (Nadarajah et 

al, 2011). 

8. For  𝛽 =  1, the proposed model reduces to 

Exponentiated new Exponential Gamma 

Distribution (Zakariyau et. al. , 2025)as,  

𝑓(𝑥) =
𝜃𝜆(𝜃+𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃+𝛤(𝛼)
[1 − {

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}]

𝜆−1

    (20) 

𝐹(𝑥) = [1 − {
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}]

𝜆

, where 𝐿 =

∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0
                             (21) 

The density plot of the proposed model EGnEG at various 

values of 𝛼, 𝜃, 𝛽 and 𝜆 is shown in figure 1. It can be 

observed that: 

1. Effect of 𝛼 (Shape Parameter): 

 When 𝛼 increases, it generally shifts the 

peak of the PDF to the right and 

increases the spread of the distribution. 

This means the distribution becomes 

more spread out (e.g., more likely to 
take larger values). 

 For smaller values of 𝛼, the PDF will 

peak sharply and decay more quickly. 

 In the CDF, a higher 𝛼 will cause the 

cumulative probability to rise more 

gradually over the range of 𝑋. 

2. Effect of 𝛽 (Exponentiation Parameter): 

 A smaller 𝛽 results in a sharper peak 

near zero (indicating higher 

probability density at smaller values 

of 𝑋). 

 As 𝛽 increases, the distribution 

becomes more spread out, with the 

PDF decaying more slowly and the 

CDF rising more slowly. 

 For example, when 𝛽 = 2, the CDF 

will tend to approach 1 more 

gradually, meaning the probability 

accumulates more slowly. 

3. Effect of 𝜆 (Exponentiation Factor): 

 A higher 𝜆 increases the tail 

heaviness of the distribution, causing 
the PDF to decay more slowly at 

larger 𝑋 values. This means the 

distribution has a longer tail, and the 

random variable 𝑋 is more likely to 

take large values. 

 In the CDF, a higher 𝜆 will cause the 

function to rise more slowly, 

implying it takes a longer 𝑋-range to 

reach a cumulative probability of 1. 

4. Effect of 𝜃 (Scale Parameter): 

 Larger values of 𝜃 spread out the 

distribution and decrease the peak of 

the PDF. It also shifts the distribution 

rightward, making larger values of 𝑋 

more probable. 

 In the CDF, increasing 𝜃 will cause 

the curve to rise more gradually, 

meaning it takes longer for the 

cumulative probability to reach 1. 
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Figure 1: The density plot of theEGnEG distribution at various values of 𝜶,𝜽, 𝜷 𝐚𝐧𝐝 𝝀 

 

Specific Effects on the Plot: 

1. For 𝜶 = 𝟏, 𝜷 = 𝟏, 𝝀 = 𝟏 𝐚𝐧𝐝 𝜽 = 𝟏:  

 This combination will gives the 

Exponential distribution. The PDF 

will have a simple exponential decay, 

and the CDF will rise steadily as 𝑥 

increases. 

2. For 𝜶 = 𝟐, 𝜷 = 𝟏, 𝝀 = 𝟏 𝐚𝐧𝐝 𝜽 = 𝟏:  

 This combination will give the Lindley 

distribution. The PDF will be more 

spread out compared to the Exponential 

distribution, and the CDF will rise more 

slowly, indicating a more gradual 

accumulation of probability over 𝑥. 

3. For 𝜶 = 𝟏, 𝜷 = 𝟏, 𝝀 = 𝟐 𝐚𝐧𝐝 𝜽 = 𝟏:  

 Increasing 𝜆 causes the distribution to 

have a heavier tail. The PDF will decay 

slower, and the CDF will increase more 

gradually, showing that larger values of 

𝑥 are more probable. 

4. For 𝜶 = 𝟐, 𝜷 = 𝟏, 𝝀 = 𝟐 𝐚𝐧𝐝 𝜽 = 𝟏:  

 With both 𝛼 and 𝜆 increasing, the PDF 

becomes more spread out, with a slower 

decay at the right tail. The CDF will  

rise more gradually, as the 

probability accumulates more slowly 

with respect to 𝑥. 

From the density plot, it is clear that density plot of 

EGnEG can take different shapes.For smaller 𝛼, the 

PDF peaks quickly and decays more rapidly while the 

CDF rises more sharply. As 𝛼and 𝛽 increase, the peak 

shifts to the right, and the tail becomes more spread 

out, with slower decay. A higher 𝜆 also leads to a 

slower decay in the tail. Larger 𝛼, 𝜆, and 𝜃 values will 

cause the CDF to rise more gradually, indicating that 

values of 𝑥 take longer to accumulate probability.It can 

be observed that the PDF for higher values of 𝛼or 𝜆 

spreads out, and the CDF for these same values rises 

more gradually. 

 

Statistical Properties 

Major characteristics of the proposed model EGNEG 
are derived in this section.  

 

1 Survival rate function  

The survival function is defined as the probability of an 

event not failing before specified time 𝑡. Survival 

function of EGnEG is given as 

 

CDF PDF
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𝑆(𝑥) = 1 − 𝐹(𝑥)     (22) 

𝑆(𝑥) = 1 − [1 − {1 −
[𝜃(1−𝑒−𝜃𝑥)+𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

=

[1 − {
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

   (23) 

The survival function 𝑺(𝒙)represents the probability that 

the random variable 𝑋 takes a value greater than 𝑥. In 

other words, 𝑆(𝑥)gives us the likelihood that 𝑋 "survives" 

beyond a particular threshold 𝑥. 

 As 𝒙 → 𝟎: The survival function 𝑆(𝑥) is 

expected to be close to 1, as the probability 

that 𝑋 exceeds 0 is very high (since 𝑋starts 

from 0). 

 As 𝒙 increases: The survival function will 

decrease because the probability that 𝑋 

exceeds 𝑥 decreases as 𝑥 increases. It will 

approach 0 as 𝑥 → ∞. 

 

 
Figure 2: The Survival rate function plot of theEGnEG distribution at various values of 𝜶,𝜽, 𝜷 𝐚𝐧𝐝 𝝀 

 

 

For small 𝑥, the survival function starts close to 1. This is 

because the probability that 𝑋 exceeds a small value is 

high.As 𝑥 increases, the survival function decreases, as 

the probability of 𝑋 exceeding 𝑥 becomes smaller. The 

rate of decrease depends on the model parameters 𝛼, 𝛽, 

and 𝜆. Higher values of these parameters lead to slower 

decay in the survival function (indicating that the random 

variable 𝑋has a longer "tail"). Larger values of 𝛼, 𝛽, or 

𝜆makes the survival function decay more slowly. This 

means that the "tail" of the distribution is heavier, and 

there is a higher chance that 𝑋takes larger values. This 

plot visually captures how the survival probability 

changes with different parameter values and show you 

the impact of the EGnEG distribution’s tail behavior. 

 

Hazard rate function  
The hazard function is the defined as the instant failure 

rate at a given time 𝑡. The hazard function ℎ(𝑥) of the 

proposed model is given as 

ℎ(𝑥) =
𝑓(𝑥)

1−𝐹(𝑥)
=

𝑓(𝑥)

𝑆(𝑥)
   (24) 

=
𝛽𝜃𝜆(𝜃+𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃+𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽−1

[1 −

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

[[1 −
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{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

]

−1

                                                  (25) 

The hazard function gives the instantaneous rate of failure 

(or hazard) at time 𝑥. It can provide insight into the shape 

and behavior of the distribution: 

 If ℎ(𝑥) is constant over time, this indicates a 

memoryless or exponential distribution. 

 If ℎ(𝑥) is increasing over time, it indicates 

that the failure rate increases as 𝑥 increases, 

which is characteristic of distributions with 

"heavy" tails or distributions where the 

likelihood of an event increases over time. 

 If ℎ(𝑥) is decreasing over time, it indicates 

that the failure rate decreases as 𝑥 increases, 

which is common in systems where the risk of 

failure reduces as time progresses. 

 
Figure 3: The Hazard rate function plot of theEGnEG distribution at various values of 𝜶,𝜽, 𝜷 𝐚𝐧𝐝 𝝀 

 

Increasing Hazard Function: If the hazard function 

ℎ(𝑥) increases as 𝑥 increases, it indicates that the 

likelihood of "failure" increases as time goes on. This is 

often the case in distributions that model systems with 

aging or wear-out processes, where the risk increases over 

time. 

Decreasing Hazard Function: If ℎ(𝑥) decreases as 𝑥 

increases, it implies that the "failure rate" decreases over 

time. This may indicate systems that become more stable 

or resilient as time progresses. 

Flat Hazard Function: If ℎ(𝑥) is relatively flat, it 
suggests a memoryless process, which is a characteristic 

of the exponential distribution. 

By plotting the hazard function for different parameter 

values 𝛼, 𝛽, 𝜆, and 𝜃, gives insights into how these 

parameters influence the failure rate over time. 

 

Asymptotic properties  

To check whether the model is uni-modal or not, some 
of its asymptotic properties are studies. For this, we 

have found the limiting values of density function 𝑓(𝑥) 

in equation (19) at 𝑥 = 0 and 𝑥 = ∞. That is, for 𝑥 →
 0. 

lim
𝑥→0

𝑓(𝑥;  𝛼, 𝛽, 𝜆, 𝜃) 

= lim
𝑥→0

[
𝛽𝜃𝜆(𝜃 + 𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃 + 𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽−1

[1

− {
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆−1

= 0] 

Similarly for 𝑥 → ∞ 

lim
𝑥→∞

𝑓(𝑥;  𝛼, 𝛽, 𝜆, 𝜃) 
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= lim
𝑥→∞

[
𝛽𝜃𝜆(𝜃 + 𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃 + 𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽−1

[1

− {
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆−1

= 0] 

Since the limiting values of 𝑓(𝑥) 𝑓𝑜𝑟 𝑥 →
 0 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑥 → ∞ are 0 confirms that the proposed 

model EGnEG is uni-modal. 

 

Entropy Measures 

Shannon Entropy 
Shannon Entropy is a measure of uncertainty or 

information content of a random variable. The Shannon 

Entropy 𝐻(𝑋) for a continuous random variable with 

probability density function 𝑓(𝑥) is given by: 

𝐻(𝑋) = −∫ 𝑓(𝑥) ln(𝑓(𝑥)) 𝑑𝑥
∞

0
   (26) 

For the EGnEG distribution, we substitute the PDF of the 

distribution 𝑓(𝑥)in (19) into this formula in (26) as: 

𝐻(𝑋) =

−∫
𝛽𝜃𝜆(𝜃+𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃+𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽−1

[1 −
∞

0

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

ln (
𝛽𝜃𝜆(𝜃+𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃+𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽−1

[1 −

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

)𝑑𝑥                                    (27) 

While this is quite complex, it is solvable through 

numerical integration techniques for specific values of the 

parameters 𝛼, 𝛽, 𝜆, and 𝜃. 

 

Renyi Entropy 

The Renyi entropy of order 𝛼 is a generalization of 

Shannon entropydefined as: 

𝐻𝛼(𝑋) =
1

1−𝛼
ln (∫ 𝑓(𝑥)

∞

0

𝛼
𝑑𝑥)           (28) 

For the EGnEG distribution, we substitute the PDF 

𝑓(𝑥)in (19) into the above formula in (28). For 𝛼 ≠ 1, the 

Renyi entropy can be computed as: 

𝐻𝛼(𝑋) =

1

1−𝛼
ln (∫ (

𝛽𝜃𝜆(𝜃+𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃+𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽−1

[1 −
∞

0

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

)

𝛼

𝑑𝑥)   (29) 

Again, this integral requires numerical techniques to 

compute in practice. Where 𝐿 is as defined earlier. 

 

Order Statistic for the EGnEG distribution 

Order statistics refer to the distribution of the 𝑘𝑡ℎ smallest 

value in a sample of size 𝑛. The probability density 

function for the 𝑘𝑡ℎ order statistic 𝑋(𝑘) for a random 

sample from the EGnEG distribution is given by: 

𝑓𝑋(𝑘)
(𝑥) =

𝑛!

(𝑘−1)!(𝑛−𝑘)!
[𝐹𝑋(𝑥)]𝑘−1[1 −

𝐹𝑋(𝑥)]𝑛−𝑘𝑓𝑋(𝑥)(30) 

            where: 

 𝐹𝑋(𝑥) is the cumulative distribution function 

(CDF) of EGnEG distribution. 

 𝑓𝑋(𝑥) is the probability mass function (PDF) 

of EGnEG distribution. 

Thus, the PDF of the 𝑘𝑡ℎorder statistic for the EGnEG 

distribution is given as: 

𝑓𝑋(𝑘)
(𝑥) =

𝑛!

(𝑘−1)!(𝑛−𝑘)!
[[1 −

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

]

𝑘−1

[1 − [1 −

{
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

]

𝑛−𝑘

𝑓𝑋(𝑥)            (31) 

This is another integral that would require numerical 

methods to evaluate for specific values of the 

parameters and sample size. 

 

Parameter Estimation  

Parameters of the new distribution are estimated using 

the three commonly used estimation methods; 

Maximum likelihood estimators (MLE), Cramer-Von-

Mises (CVM) and Least-squares (LSE) methods.  

 

Maximum Likelihood Estimation (MLE)  

In this section, we have presented the ML estimators 

(MLE's) of the EGnEG distribution.  

Let 𝑥𝑖 , 𝑖 = 1, 2, 3, …𝑛, be a random sample of size ‘n’ 

from the Exponentiated Generalized New Exponential-

Gamma distribution. The likelihood function L of 𝑥 is 

defined as; 

𝐿 = ∏𝑓(𝑥; 𝛼, 𝛽, 𝜆, 𝜃)

𝑛

𝑖

 

= ∏[
𝛽𝜃𝜆(𝜃 + 𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥

𝜃 + 𝛤(𝛼)
{
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽−1

[1

𝑛

𝑖

− {
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆−1

] 

=
(𝛽𝜆𝜃)𝑛

(𝜃 + 𝛤(𝛼))
𝑛 . 𝑒−𝜃 ∑ 𝑥𝑖

𝑛
𝑖 ∑[𝜃

𝑛

𝑖

+ 𝜃𝛼−1(𝑥𝑖)
𝛼−1]∑{

[𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽−1𝑛

𝑖

× ∑[1 − {
[𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆−1𝑛

𝑖
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Taking natural log likelihood is thus obtained as 

ℓ(𝛼, 𝛽, 𝜆, 𝜃 𝑥⁄ ) = 𝑛𝑙𝑛(𝛽𝜃𝜆) − 𝑛𝑙𝑛(𝜃 + 𝛤(𝛼)) −

𝜃 ∑ 𝑥𝑖
𝑛
𝑖 + (𝛽 − 1) ∑ 𝑙𝑛 [

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
]𝑛

𝑖 +

∑ 𝑙𝑛𝑛
𝑖 [𝜃 + 𝜃𝛼−1(𝑥𝑖)

𝛼−1] + (𝜆 − 1)∑ 𝑙𝑛 [1 −𝑛
𝑖

{
[𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}

𝛽

]              (32) 

Differentiating (32) with respect to the parameters 

𝛼, 𝛽, 𝜆 𝑎𝑛𝑑 𝜃, we get 
 

𝜕ℓ

𝜕𝛼
= −

𝑛Γ′(𝛼)

𝜃 + Γ(𝛼)
+ ∑[

(𝜃𝑥𝑖)
𝛼−1 ln(𝜃𝑥𝑖)

𝜃 + (𝜃𝑥𝑖)
𝛼−1

]

𝑛

𝑖=1

+ (𝛽 − 1)∑[
(𝜃 − 𝜃𝑒−𝜃𝑥𝑖 + 𝜃𝛼𝐿)Γ′(𝛼) − (𝜃 + Γ(𝛼))𝜃𝛼𝐿𝑙𝑛𝜃

(𝜃 + Γ(𝛼))(𝜃 − 𝜃𝑒−𝜃𝑥𝑖 + 𝜃𝛼𝐿)
]

𝑛

𝑖=1

− 𝛽(𝜆 − 1) ∑

[
 
 
 
 
 
[1 − {

𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]

−1

[
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
]

𝛽−1

[
(𝜃 − 𝜃𝑒−𝜃𝑥𝑖 + 𝜃𝛼𝐿)Γ′(𝛼) − (𝜃 + Γ(𝛼))𝜃𝛼𝐿𝑙𝑛𝜃

(𝜃 + Γ(𝛼))(𝜃 − 𝜃𝑒−𝜃𝑥𝑖 + 𝜃𝛼𝐿)
]

]
 
 
 
 
 

𝑛

𝑖=1

 

𝜕ℓ

𝜕𝛽
=

𝑛

𝛽
+ ∑𝑙𝑛

𝑛

𝑖=1

[
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
]

− (𝜆

− 1) ∑[1 − {
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]

−1𝑛

𝑖=1

[
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
]

𝛽

𝑙𝑛 [
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
] 

𝜕ℓ

𝜕𝜆
=

𝑛

𝜆
+ ∑𝑙𝑛

𝑛

𝑖=1

[1 − {
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

] 

𝜕ℓ

𝜕𝜃

=
𝑛

𝜃
−

𝑛

𝜃 + 𝛤(𝛼)
− ∑𝑥𝑖

𝑛

𝑖=1

+ ∑[
(𝛼 − 1)𝜃𝛼−2(𝑥𝑖)

𝛼−1

𝜃 + 𝜃𝛼−1(𝑥𝑖)
𝛼−1

]

𝑛

𝑖=1

+ (𝛽 − 1)∑[
(𝜃 − 𝜃𝛼 − 𝛼𝛤(𝛼))𝜃𝛼−1𝐿 − (𝜃 + 𝛤(𝛼))𝜃𝛼𝐿′ − (𝜃2𝑥𝑖 + 𝜃𝑥𝑖𝛤(𝛼) + 𝛤(𝛼))𝑒−𝜃𝑥𝑖 − 𝛤(𝛼)

(𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿)(𝜃 + 𝛤(𝛼))
]

𝑛

𝑖=1

− 𝛽(𝜆 − 1) ∑

[
 
 
 
 
 

[1 − {
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]

−1

[
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
]

𝛽−1

[
(𝜃 − 𝜃𝛼 − 𝛼𝛤(𝛼))𝜃𝛼−1𝐿 − (𝜃 + 𝛤(𝛼))𝜃𝛼𝐿′ − (𝜃2𝑥𝑖 + 𝜃𝑥𝑖𝛤(𝛼) + 𝛤(𝛼))𝑒−𝜃𝑥𝑖 − 𝛤(𝛼)

(𝜃 + 𝛤(𝛼))
2 ]

]
 
 
 
 
 

𝑛

𝑖=1

 

Where, 

𝐿 = ∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0

    𝑎𝑛𝑑 𝐿′ =
𝑑

𝑑𝜃
(∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡

𝑥

0

) 

By setting 
𝜕ℓ

𝜕𝛼
=

𝜕ℓ

𝜕𝛽
=

𝜕ℓ

𝜕𝜆
=

𝜕ℓ

𝜕𝜃
= 0 and solving them for 

𝛼, 𝛽, 𝜆 and 𝜃, we get the ML estimates of the 

𝐸𝐺𝑛𝐸𝐺 (𝛼, 𝛽, 𝜆 𝜃)distribution. But normally, it is not 

possible to solve non-linear equations (32) so with help of 

suitable R package, one can solve them easily. Let Θ =
(𝛼, 𝛽, 𝜆, 𝜃)denote the parameter vector of 

𝐸𝐺𝑛𝐸𝐺 (𝛼, 𝛽, 𝜆 𝜃)  and the MLE of Θ 𝑎𝑠Θ̂ = (�̂�, �̂�, �̂�, 𝜃), 

then the asymptotic normality results in (Θ̂ − Θ) →

𝑁4 [0, (𝐼 (Θ))
−1

] where 𝐼(Θ)the Fisher information 

matrix is given by, 

𝐼(Θ) =

[
 
 
 
 
 
 
 
 
 𝐸 (

𝜕2𝑙

𝜕𝛼2
)

𝐸 (
𝜕2𝑙

𝜕𝛽𝜕𝛼
)

𝐸 (
𝜕2𝑙

𝜕𝜆𝜕𝛼
)

𝐸 (
𝜕2𝑙

𝜕𝜃𝜕𝛼
)

𝐸 (
𝜕2𝑙

𝜕𝛼𝜕𝛽
)

𝐸 (
𝜕2𝑙

𝜕𝛽2
)

𝐸 (
𝜕2𝑙

𝜕𝜆𝜕𝛽
)

𝐸 (
𝜕2𝑙

𝜕𝜃𝜕𝛽
)

𝐸 (
𝜕2𝑙

𝜕𝛼𝜕𝜆
)

𝐸 (
𝜕2𝑙

𝜕𝛽𝜕𝜆
)

𝐸 (
𝜕2𝑙

𝜕𝜆2
)

𝐸 (
𝜕2𝑙

𝜕𝜃𝜕𝜆
)

𝐸 (
𝜕2𝑙

𝜕𝛼𝜕𝜃
)

𝐸 (
𝜕2𝑙

𝜕𝛽𝜕𝜃
)

𝐸 (
𝜕2𝑙

𝜕𝜆𝜕𝜃
)

𝐸 (
𝜕2𝑙

𝜕𝜃2
)

]
 
 
 
 
 
 
 
 
 

 

 
Hence by plugging in the estimated values of the 

parameters, we approximate the asymptotic variance. 

An estimate of the information matrix 𝐼(Θ) given by 

the observed Fisher information matrix 𝑂(Θ̂) as 
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𝑂(Θ̂) =

[
 
 
 
 
 
 
 
 
 (

𝜕2𝑙

𝜕𝛼2
)

(
𝜕2𝑙

𝜕𝛽𝜕𝛼
)

(
𝜕2𝑙

𝜕𝜆𝜕𝛼
)

(
𝜕2𝑙

𝜕𝜃𝜕𝛼
)

(
𝜕2𝑙

𝜕𝛼𝜕𝛽
)

(
𝜕2𝑙

𝜕𝛽2
)

(
𝜕2𝑙

𝜕𝜆𝜕𝛽
)

(
𝜕2𝑙

𝜕𝜃𝜕𝛽
)

(
𝜕2𝑙

𝜕𝛼𝜕𝜆
)

(
𝜕2𝑙

𝜕𝛽𝜕𝜆
)

(
𝜕2𝑙

𝜕𝜆2
)

(
𝜕2𝑙

𝜕𝜃𝜕𝜆
)

(
𝜕2𝑙

𝜕𝛼𝜕𝜃
)

(
𝜕2𝑙

𝜕𝛽𝜕𝜃
)

(
𝜕2𝑙

𝜕𝜆𝜕𝜃
)

(
𝜕2𝑙

𝜕𝜃2
)

]
 
 
 
 
 
 
 
 
 

(�̂�,�̂�,�̂�,�̂�)

 

= −𝐻(Θ)
(Θ−Θ̂)

 

where H is the Hessian matrix. 

The Newton-Raphson algorithm is used in this paper to 

maximize the likelihood estimate which produces the 
observed information matrix. Therefore, the variance-

covariance matrix is given by, 

[−𝐻(Θ)
(Θ−Θ̂)

]
−1

=

[
 
 
 
 𝑣𝑎𝑟(�̂�)

𝑐𝑜𝑣(�̂�, �̂�)

𝑐𝑜𝑣(�̂�, �̂�)

𝑐𝑜𝑣(𝜃, �̂�)

𝑐𝑜𝑣(�̂�, �̂�)

𝑣𝑎𝑟(�̂�)

𝑐𝑜𝑣(�̂�, �̂�)

𝑐𝑜𝑣(𝜃, �̂�)

𝑐𝑜𝑣(�̂�, �̂�)

𝑐𝑜𝑣(�̂�, �̂�)

𝑣𝑎𝑟(�̂�)

𝑐𝑜𝑣(𝜃, �̂�)

𝑐𝑜𝑣(�̂�, 𝜃)

𝑐𝑜𝑣(�̂�, 𝜃)

𝑐𝑜𝑣(�̂�, 𝜃)

𝑣𝑎𝑟(𝜃) ]
 
 
 
 

  

                                                   (33) 
Hence from the asymptotic normality of MLEs, 

approximate 100(1 − 𝛼)% confidence intervals for 

𝛼, 𝛽, 𝜆 and 𝜃 can be constructed as, 

�̂� ± 𝑍𝛼 2⁄ √𝑣𝑎𝑟(�̂�),�̂� ± 𝑍𝛼 2⁄ √𝑣𝑎𝑟(�̂�), �̂� ±

𝑍𝛼 2⁄ √𝑣𝑎𝑟(�̂�), 𝜃 ± 𝑍𝛼 2⁄ √𝑣𝑎𝑟(𝜃) 

Where 𝑍𝛼 2⁄  is the upper percentile of standard normal 

variate. 

 

Method of Least-Square Estimation (LSE)  

The LSE of the unknown parameters  𝛼, 𝛽, 𝜆  𝑎𝑛𝑑 𝜃 of 𝐸𝐺𝑛𝐸𝐺 (𝛼, 𝛽, 𝜆 𝜃)distribution can be obtained by using the 

principle of optimization. Here, we have estimated parameters by minimizing 

𝐴(𝑥;𝛼, 𝛽, 𝜆, 𝜃) = ∑ [𝐹(𝑋(𝑖)) −
𝑖

𝑛+1
]
2

𝑛
𝑖=1                      (34) 

With respect to unknown parameters 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 

Suppose 𝐹(𝑋(𝑖)) denotes the CDF of the ordered random variables 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑛) where {𝑋1, 𝑋2, … , 𝑋𝑛} is 

a random sample of size n taken from a distribution function F(.). The least-square estimators of 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 say 

�̂�, �̂�, �̂�, 𝑎𝑛𝑑 𝜃 respectively, can be obtained by minimizing. 

𝐴(𝑥;𝛼, 𝛽, 𝜆, 𝜃) = ∑ [[1 − {
[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

−
𝑖

𝑛+1
]

2

𝑛
𝑖=1 ; 𝑥 > 0, (𝛼, 𝛽, 𝜆, 𝜃) > 0…               (35) 

With respect to unknown parameters 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 

Differentiating (35) with respect to 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 we get 

𝜕𝐴

𝜕𝛼
= −2𝛽𝜆 ∑

[
 
 
 
 
 
 
[[1 − {

[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆

−
𝑖

𝑛 + 1
] [1 − {

𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆−1

 × {
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽−1

[
(𝜃 − 𝜃𝑒−𝜃𝑥𝑖 + 𝜃𝛼𝐿)Γ′(𝛼) − (𝜃 + Γ(𝛼))𝜃𝛼𝐿𝑙𝑛𝜃

(𝜃 + Γ(𝛼))
2 ]

]
 
 
 
 
 
 

𝑛

𝐼=1

 

𝜕𝐴

𝜕𝛽
= −2𝜆 ∑

[
 
 
 
 
 
[[1 − {

[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆

−
𝑖

𝑛 + 1
] [1 − {

𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆−1

× {
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

𝑙𝑛 [
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
]

]
 
 
 
 
 

𝑛

𝐼=1

 

𝜕𝐴

𝜕𝜆
= −2∑

[
 
 
 
 
 
[[1 − {

[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆

−
𝑖

𝑛 + 1
] [1 − {

𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆

× 𝑙𝑛 [1 − {
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]
]
 
 
 
 
 

𝑛

𝐼=1
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𝜕𝐴

𝜕𝜃
= −2𝛽𝜆 ∑

[
 
 
 
 
 
 
 
 

[[1 − {
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆

−
𝑖

𝑛 + 1
] [1 − {

𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆−1

{
𝜃𝑒−𝜃𝑥𝑖 + 𝛤(𝛼) − 𝜃𝛼𝐿

𝜃 + 𝛤(𝛼)
}

𝛽−1

[
(𝜃 − 𝜃𝛼 − 𝛼𝛤(𝛼))𝜃𝛼−1𝐿 − (𝜃 + 𝛤(𝛼))𝜃𝛼𝐿′ − (𝜃2𝑥𝑖 + 𝜃𝑥𝑖𝛤(𝛼) + 𝛤(𝛼))𝑒−𝜃𝑥𝑖 − 𝛤(𝛼)

(𝜃 + 𝛤(𝛼))
2 ]

]
 
 
 
 
 
 
 
 

𝑛

𝐼=1

 

Where,  𝐿 = ∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0
    𝑎𝑛𝑑 𝐿′ =

𝑑

𝑑𝜃
(∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡

𝑥

0
) 

In similar manner, we can estimate the weighted least square estimators by minimizing  

𝐷(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) = ∑ 𝑤𝑖 [𝐹(𝑋(𝑖)) −
𝑖

𝑛 + 1
]
2𝑛

𝑖=1

= ∑𝑤𝑖 [[1 − {
[𝜃𝑒−𝜃𝑥 + 𝛤(𝛼) − 𝜃𝛼𝐿]

𝜃 + 𝛤(𝛼)
}

𝛽

]

𝜆

−
𝑖

𝑛 + 1
]

2
𝑛

𝑖=1

 

With respect to 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃. The weights 𝑤𝑖 are computed as 𝑤𝑖 =
1

𝑉𝑎𝑟(𝑋(𝑖))
=

(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
 

Hence, the weighted least square estimators of 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 respectively can be obtained by minimizing, 

𝐷(𝑋; 𝛼, 𝛽, 𝜆, 𝜃) = ∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
[[1 − {

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

−
𝑖

𝑛+1
]

2

𝑛
𝑖=1                 (36) 

 

Method of Cramer-Von-Mises estimation (CVME)  

The Cramer-Von-Mises-estimators of 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 are obtained by minimizing the function 

𝑍(𝑋; 𝛼, 𝛽, 𝜆, 𝜃) =
1

12𝑛
+ ∑[𝐹 (

𝑋𝑖:𝑛

𝛼
, 𝛽, 𝜆, 𝜃) −

2𝑖 − 1

2𝑛
]
2𝑛

𝑖=1

 

𝑍(𝑋; 𝛼, 𝛽, 𝜆, 𝜃) =
1

12𝑛
+ ∑ [[1 − {

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

−
2𝑖−1

2𝑛
]

2

𝑛
𝑖=1     (37) 

Differentiating (31) with respect to 𝛼, 𝛽, 𝜆, 𝑎𝑛𝑑 𝜃 we get 

𝜕𝑍

𝜕𝛼
= −2𝛽𝜆∑

[
 
 
 
 [[1 − {

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

−
2𝑖−1

2𝑛
] [1 − {

𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

{
𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽−1

[
(𝜃−𝜃𝑒−𝜃𝑥𝑖+𝜃𝛼𝐿)Γ′(𝛼)−(𝜃+Γ(𝛼))𝜃𝛼𝐿𝑙𝑛𝜃

(𝜃+Γ(𝛼))
2 ]

]
 
 
 
 

𝑛
𝐼=1   (38) 

𝜕𝑍

𝜕𝛽
= −2𝜆 ∑

[
 
 
 
 [[1 − {

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

−
2𝑖−1

2𝑛
] [1 − {

𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

{
𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽

𝑙𝑛 [
𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
]

]
 
 
 
 

𝑛
𝐼=1   (39) 

𝜕𝑍

𝜕𝜆
= −2∑

[
 
 
 
 [[1 − {

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

−
2𝑖−1

2𝑛
] [1 − {

𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

𝑙𝑛 [1 − {
𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽

]
]
 
 
 
 

𝑛
𝐼=1    (40) 

𝜕𝑍

𝜕𝜃
= −2𝛽𝜆∑

[
 
 
 
 
 
 
 [[1 − {

[𝜃𝑒−𝜃𝑥+𝛤(𝛼)−𝜃𝛼𝐿]

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆

−
2𝑖−1

2𝑛
] [1 − {

𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽

]

𝜆−1

{
𝜃𝑒−𝜃𝑥𝑖+𝛤(𝛼)−𝜃𝛼𝐿

𝜃+𝛤(𝛼)
}
𝛽−1

[
(𝜃−𝜃𝛼−𝛼𝛤(𝛼))𝜃𝛼−1𝐿−(𝜃+𝛤(𝛼))𝜃𝛼𝐿′−(𝜃2𝑥𝑖+𝜃𝑥𝑖𝛤(𝛼)+𝛤(𝛼))𝑒−𝜃𝑥𝑖−𝛤(𝛼)

(𝜃+𝛤(𝛼))
2 ]

]
 
 
 
 
 
 
 

𝑛
𝐼=1    (41) 

Where,  𝐿 = ∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡
𝑥

0
    𝑎𝑛𝑑 𝐿′ =

𝑑

𝑑𝜃
(∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡

𝑥

0
) 
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By setting 
𝜕𝑍

𝜕𝛼
= 0,

𝜕𝑍

𝜕𝛽
= 0,

𝜕𝑍

𝜕𝜆
= 0 𝑎𝑛𝑑 

𝜕𝑍

𝜕𝜃
=

0  simultaneously, we obtained the CVM estimators. 

The maximum likelihood estimates of the parameters 

𝛼, 𝛽, 𝜆 and 𝜃 respectively are taken by solving the 

equations (38 to 41). But they cannot be solved 

analytically because they are not expressed in closed 

form. These equations can be solved using any numerical 

method such as the Newton-Raphson method 

(Henningsen & Toomet, 2011), the Nelder-Mead method 

(Nelder &Mead, 1965), BFGS method (Fletcher, 1987), 
SANN method (Belisle, 1992), and the like. The Newton-

Raphson method is however employed in this paper with 

the use of the optim function in R package (R Core Team, 

2018) and Henningsen & Toomet, (2011) to solve the 

equations iteratively. 

 

Applications 

In this section, the goodness-of-fit of the distribution is 

discussed with an application to real-life datasets. The 

parameters of the distribution were solved using the 

MLE method while the goodness-of-fit was evaluated 

using the Akaike Information Criterion (AIC), Akaike 

Information Criterion Corrected (AICC), Bayesian 

Information Criterion (BIC) and –2logLik with their 
respective statistics given below. 

𝐴𝐼𝐶 = −2ln𝐿 + 2𝑘   
 (42) 

𝐵𝐼𝐶 = −2ln𝐿 + 𝑘ln𝑛   
 (43) 

where k is the number of parameters and n is the 

sample size. The distribution that has a lower value of 

these criteria is judged to be the best among others. 

 

Data Description: This represents an uncensored 
dataset corresponding to Remission times (in months) 

of a random sample of 118 Bladder cancer patients 

reported in Lee & Wang (2003) and used by Umar et al 

(2019) to mention but few. 

 

Table 1: Summary Statistics of the dataset used (Remission times (in months) of Bladder cancer data) 

Statistic Mean Median Min Max 1st Qu. 3rd Qu. Std Dev Skew Kurtosis 

Value 7.546 5.34 0.08 79.05 2.535 11.4 8.94 1.2 3.5 

 

The mean (7.546) and median (5.340) provide different 

perspectives of central tendency. The mean is higher than 
the median, suggesting a right-skewed distribution where 

a few large values pull the mean upwards. The standard 

deviation (8.94) is large, indicating that the data points are 

widely spread out from the mean. The positive skew 

(1.20) tells us that the data has a rightward tail with some 

extreme high values, which is supported by the large 

maximum value (79.05).The kurtosis (3.50) indicates that 

the distribution has heavy tails, which could mean that 

there are a few extreme values (outliers) in the dataset. 
Therefore, the data appears to be right-skewed with a 

few large values that are influencing the mean and 

other statistics. The dataset has a relatively wide range, 

and the presence of heavy tails suggests that outliers 

may play an important role in the overall distribution 

of the data. 

 
Table 1: Parameters Estimation and Goodness-of-Fit Test Results of the EGnEG and other Existing 

distributions for the Remission times (in months) of Bladder cancer data 

DISTRIBUTION ML ESTIMATE -2logLik AIC BIC 

EGnEG 

 

 

 

 

�̂� = 1.041 699.917 707.917 708.677 

�̂� = 3.002    

�̂� = 0.007    

𝜃 = 0.086    

ENEGD �̂� = 0.961 711.091 717.091 717.862 

 

𝜃 = 0.141 

   

 

�̂� = 3.071 

   
NEGD �̂� = 1.462 742.679 746.679 747.449 

 

𝜃 = 0.104 
   

EGD �̂� = 1.946 731.254 735.254 738.502 

 

𝜃 = 0.002 
   

GD �̂� = 0.386 742.234 746.234 747.005 
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𝜃 = 0.744 
   

ELD �̂� = 0.791 739.584 745.368 744.139 

 

𝜃 = 0.557 
   

LD 𝜃 = 0.196 839.060 841.060 843.912 

EED �̂� = 0.930 726.695 730.695 745.778 

 

𝜃 = 0.111 
   

ED 𝜃 = 0.116 743.718 745.718 748.489 

 

RESULTS AND DISCUSSION 
 

The analysis of the remission times for Bladder cancer 

data using various lifetime distributions revealed that the 

Exponentiated Generalized New Exponential-Gamma 

(EGnEG) distribution provided the best fit compared to 

other established models. In Table 1, the maximum 

likelihood (ML) estimates for the parameters of each 

distribution, along with the corresponding values for -

2logLik, AIC, and BIC, are presented for comparison. 

The EGnEG distribution, with its four parameters 
achieved the lowest -2logLik (699.917), AIC (707.917), 

and BIC (708.677) values, indicating its superior fit to the 

Bladder cancer remission time data. The low values of 

AIC and BIC suggest that the EGnEG distribution is not 

only a good fit but also the most parsimonious model 

among the tested distributions, which is crucial when 

balancing model fit and complexity. 

The ENEGD presented -2logLik = 711.091, AIC = 

717.091, and BIC = 717.862. Although it performed 

reasonably well, it did not outperform the EGnEG model. 

The higher AIC and BIC values for ENEGD suggest that 

the more complex structure of the EGnEG distribution, 

which includes the additional flexibility provided by the 𝛽 

and 𝜆 parameters, leads to a better model fit for this 

dataset. 

The other distributions, such as the New Exponential-

Gamma Distribution (NEGD), Exponentiated Generalized 

Distribution (EGD), Generalized Distribution (GD), 

Exponentiated Lindley Distribution (ELD), Lindley 

Distribution (LD), Exponentiated Exponential 

Distribution (EED), and Exponential Distribution (ED), 

all exhibited relatively higher AIC and BIC values 
compared to the EGnEG distribution, suggesting that they 

were not as well-suited for modeling the remission times 

of Bladder cancer. Specifically, the NEGD and EGD had 

-2logLik values of 742.679 and 731.254, respectively, 

with corresponding AIC and BIC values significantly 

higher than those of the EGnEG model. 

In terms of parameter estimates, the EGnEG distribution's 

parameter values (e.g., 𝜃 =  0.086) indicate a relatively 

slow rate of remission, which aligns with expectations in 

the context of medical data, where remission times for 

cancer patients often exhibit slower decay over time. The 

shape parameters 𝛼 and 𝛽, as well as the scale parameter 

𝜃, provide important insights into the distribution of 
remission times, allowing for a more nuanced 

understanding of the remission process. 

The superior performance of the EGnEG distribution 

suggests that it is a robust and flexible model for 

analyzing lifetime data in medical and clinical 

contexts, particularly for complex datasets like cancer 

remission times. The model’s ability to capture both 

the shape of the distribution and the varying hazard 

rate over time makes it an ideal candidate for modeling 

survival data with non-constant hazard functions. 

The AIC and BIC results also underscore the 

importance of considering both model fit and 
parsimony when selecting the best distribution for data 

modeling. The EGnEG distribution’s balance between 

these factors makes it a highly practical choice for 

researchers and practitioners in fields such as 

oncology, where accurate modeling of survival and 

remission times is essential for decision-making. 

Although the EGnEG distribution provided a superior 

fit to the data in this study, there are still several 

opportunities for improvement and exploration. For 

example, further research could investigate the 

sensitivity of the EGnEG model to different initial 
parameter estimates or data sets with varying sample 

sizes. Additionally, while the EGnEG distribution 

outperformed other models in this study, it would be 

valuable to explore its application to other types of 

medical and clinical data, such as mortality rates or 

recovery times, to confirm its robustness and 

generalizability. 

Moreover, future work could focus on extending the 

EGnEG model by incorporating covariates that 

influence the remission time, such as age, treatment 

type, or genetic factors. This would allow for a more 
comprehensive understanding of the factors 

influencing remission and could provide insights into 

personalized treatment strategies. 

Another avenue for future research is the development 

of computational tools and algorithms that can 

efficiently estimate the parameters of the EGnEG 

distribution in large-scale clinical trials, which often 

involve large datasets with many covariates. By 

making these tools available, researchers could more 

easily apply the EGnEG distribution to a wider array of 
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datasets, improving the accuracy of their lifetime data 

models. 

 

CONCLUSION 

An Exponentiated Generalized New Exponential-Gamma 
(EGnEG) distribution was derived and studied in this 

paper. The distribution is quite flexible and can model 

data with various types of behavior, such asHeavy-tailed, 

Skewed and/or data with different levels of variability 

depending on the parameters.This distribution is useful in 

fields like; Reliability analysis, Survival analysis, 

Queueing models and Financial modeling. 

The results of this study demonstrate that the 

Exponentiated Generalized New Exponential-Gamma 

(EGnEG) distribution offers a powerful and flexible tool 

for modeling lifetime data, particularly in the context of 

medical data such as cancer remission times. Its superior 
fit, as evidenced by the lower AIC and BIC values 

compared to other models, suggests that the EGnEG 

distribution could become a valuable addition to the 

toolkit for survival analysis and reliability modeling. 

Future research should continue to explore the 

applications and potential extensions of the EGnEG 

distribution, especially in clinical settings where 

personalized treatment decisions are becoming 

increasingly important. 
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