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ABSTRACT 
This paper presents an extension of the direct product operation to 

antimultigroups. We prove that the direct product of two antimultigroups is 

itself an antimultigroup, preserving the defining axioms under Cartesian 

pairing. We introduce and analyze the main substructures of antimultigroups. 

These substructures include strong and weak upper and lower cuts, and show 

that each type of cut forms a sub-antimultigroup. Also, we examine the 

behavior of root sets and the structural connections between cuts under union 

and intersection. This leads to the establishment that such operations yield sub-

antimultigroups under suitable conditions. These findings contribute to a 

deeper understanding of the structure of antimultigroups. Thus, it lays the 

groundwork for further developments in antimultigroup theory. 
 

INTRODUCTION 

We begin by reviewing some established definitions and 

results in the realm of multigroup theory. These 

foundational concepts serve as a basis for the 

development of new ideas in this work. Additionally, we 

introduce novel definitions and results that are integral to 

the discussions and analyses presented. The first key 

concept that we revisit is multiset and their significance in 

generalizing the traditional set theory. Multisets, as 

introduced by N. G. De Bruijn (DeBruijn 1983), allow for 

the repetition of elements within an unordered collection, 

thus expanding the scope beyond the constraints of 

Cantor's crisp set. Understanding the properties and 

structures of multisets is essential in exploring the 

extensions of traditional group theory into the realm of 

multigroups. 

The field of group theory, rooted in George Cantor's set 

theory principles, has long been a significant area of 

mathematical study. Cantor's original set theory, which 

prohibited element repetition, laid the foundation for 

group theory (Kleiner, 1986). Over time, as mathematical 

research progressed, it became apparent that this 

limitation needed to be addressed. The introduction of 

multisets, proposed by N. G. De Bruijn to Knuth, 

provided a solution by allowing for the repetition of 

elements within an unordered collection (Knuth, 1981). 

Multisets have found wide-ranging applications in various 

fields such as database systems, biological systems, and 

information retrieval (Blizard, 1991; Singh 1994; Singh et 

al., 2007 & 2008). 

Furthermore, we delve into the definition and properties 

of multigroups, which are algebraic systems that adhere to  

 

 

 

 

 

group theory axioms. The evolution of multigroup 

theory, incorporating the principles of multisets and 

other non-classical groups, has paved the way for a 

greater understanding of algebraic structures. By 

synthesizing existing knowledge with new 

contributions, we comprehensively examine the direct 

product of antimultigroups and lay the groundwork for 

further exploration and analysis in subsequent sections 

of this paper (Ejegwa and Ibrahim, 2017; Ejegwa, 

2020). 

Dresher and Ore (1938) introduced multigroups as 

algebraic systems satisfying group theory axioms with 

multivalued multiplication. However, this definition 

did not align with the properties of multisets or other 

non-classical groups like fuzzy groups, soft groups, 

and intuitionistic fuzzy groups as seen in Rosenfeld 

(1971), Aktas and Cagman, (2007), Biswas, (1989) 

Nazmul and Samanta, (2011 and 2015), Shinoj et al., 

(2015) and Shinoj and Sunil, (2015). Subsequent 

research efforts aimed at refining the concept of 

multigroup by integrating it with multisets, leading to a 

more coherent and comprehensive definition. The 

notion of the direct product of antimultigroups, an 

extension of multigroup theory in reverse order, and its 

properties are presented. See Peter et al., (2024), Peter 

and Abdullahi (2025a), Peter and Abdullahi (2025b), 

Peter, (2025) are some texts with further contributions 

in the parlance of multigroupand antimultigroup – the 

last three of which are based on Singh’s dressed 

epsilon notations. 
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MATERIALS AND METHODS 

Preliminaries 

In this section, we review some existing definitions and 

results. We also introduce new definitions and results that 

will be used in this work. 

Definition 1 (Singh et al., 2007)  

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑗 , … } be a set. A multiset 𝐴 over 𝑋 is 

a function:  

𝐴: 𝑋 → ℕ = {0,1,2, … } 

such that for each 𝑥 ∈ Dom(𝐴), 𝐴(𝑥) = 𝑚𝐴(𝑥) > 0, 

where 𝑚𝐴(𝑥) denotes the multiplicity of the elements 𝑥 in 

𝐴. The set of all multisets over 𝑋 is denoted by ℳ(𝑋). 

Definition 2 (Syropoulos, 2011)  

Let 𝐴 and 𝐵 be multisets. We say that 𝐴 is a submultiset 

(or multisubset) of 𝐵, written 𝐴 ⊆ 𝐵 (or 𝐵 ⊇ 𝐴), if 

 

𝑚𝐴(𝑥) ≤ 𝑚𝐵(𝑥)for all 𝑥 ∈ 𝐷 

 

where 𝐷 is the root set of 𝐵. If 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵, then 𝐴 

is called a proper submultiset of 𝐵. 

Definition 3 (Namzul et al., 2013) 

Let 𝑋 be a group. A multiset 𝐴 over 𝑋 is said to be a 

multigroup over 𝑋 if its multiplicity function 𝑚𝐴 satisfies 

the following two conditions for all 𝑥, 𝑦 ∈ 𝑋: 

1. 𝑚𝐴(𝑥𝑦) ≥ min {𝑚𝐴(𝑥), 𝑚𝐴(𝑦)} 

2. 𝑚𝐴(𝑥−1) ≥ 𝑚𝐴(𝑥). 

It follows immediately from (2) that  

 

𝑚𝐴(𝑥−1) = 𝑚𝐴(𝑥), 
 

Since 𝑚𝐴(𝑥) = 𝑚𝐴(𝑥−1)−1 ≥ 𝑚𝐴(𝑥−1) and vice versa. 

The set of all multigroups over 𝑋 is denoted by ℳ𝐺(𝑋). 

Thus, 𝐴 is a multigroup over 𝑋 if and only if the 

multiplicity function respects the group multiplication and 

inversion as stated above. 

Definition 4 (Ejegwa, 2020) 

Let 𝑋 be a groupoid. A multiset 𝐴 over 𝑋 is called an 

antimultigroupoid of 𝑋 if 

 

𝑚𝐴(𝑥𝑦) ≤ 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦)for all 𝑥, 𝑦 ∈ 𝑋, 
 

where ∨ denotes the maximum of the two values. 

Definition 5 (Ejegwa, 2020) 

A multiset 𝐴 over a group 𝑋 is said to be an 

antimultigroup if the following conditions hold: 

1. 𝑚𝐴(𝑥𝑦) ≤ 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦)for all 𝑥, 𝑦 ∈ 𝑋, 
2. 𝑚𝐴(𝑥−1) ≤ 𝑚𝐴(𝑥) for all 𝑥 ∈ 𝑋 

The set of all antimultigroups over 𝑋 is denoted by 

𝐴ℳ𝐺(𝑋). 

 

Example 1 

Let 𝑋 = {𝑒, 𝑎, 𝑏, 𝑐} be the Klein four-group, with 

operation defined by  

𝑎𝑏 = 𝑐, 𝑎𝑐 = 𝑏, 𝑏𝑐 = 𝑎, 𝑎2 = 𝑏2 = 𝑐2 = 𝑒. 
Then the multiset 

 

𝐴 = {𝑒2, 𝑎5, 𝑏4, 𝑐5} 

 

Is an antimultigroup over 𝑋. 

 

Proposition 1 (Ejegwa, 2020) 

Let 𝐴 ∈ 𝐴ℳ𝐺(𝑋), where 𝑒 is the identity elements of 

𝑋. Then the following conditions hold: 

1. 𝑚𝐴(𝑒) ≤ 𝑚𝐴(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋, 

2. 𝑚𝐴(𝑥𝑛) ≤ 𝑚𝐴(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋, 𝑛 ∈ ℕ, 

3. 𝑚𝐴(𝑥−1) ≤ 𝑚𝐴(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 

 

Definition 6 (Nazmul et al., 2013) 

Let 𝐴 ∈ ℳ(𝑋) be a multiset over 𝑋. Define the 

following subsets: 

1. 𝐴∗ = {𝑥 ∈ 𝑋 |𝑚𝐴(𝑥) > 0, called the support 

of 𝐴 

2. 𝐴∗ = {𝑥 ∈ 𝑋 |𝑚𝐴(𝑥) = 𝑚𝐴(𝑒), where 𝑒 is the 

idendity element of 𝑋. 
 

Definition 7 (Ejegwa, 2020) 

Let 𝐴 ∈ 𝐴ℳ𝐺(𝑋). For every 𝑛 ∈ ℕ, define the cut of 

𝐴  at level 𝑛 as:  

 

𝐴[𝑛] = {𝑥 ∈ 𝑋 |𝑚𝐴(𝑥) ≤ 𝑛}. 

 

Proposition 2 (Ejegwa, 2020) 

Let 𝐴 ∈ 𝐴ℳ𝐺(𝑋). Then for every 𝑛 ≥ 𝑚𝐴(𝑒), the cut 

𝐴[𝑛] is a sub-antimultigroup of 𝑋. 

 

Proposition 3 (Ejegwa, 2020) 

Let 𝐴 ∈ 𝐴ℳ𝐺(𝑋). A submultset 𝐵 ⊆ 𝐴 is called a sub-

antimultigroup of 𝐴, denoted by 𝐵 ≤ 𝐴 if 𝐵 ∈
𝐴ℳ𝐺(𝑋); that is, if 𝐵 forms an antimultigroup under 

the same binary operation. 

 

If 𝐵 ≤ 𝐴 and 𝐵 ≠ 𝐴, then 𝐵 is called a proper sub-

antimultigroup of 𝐴, denoted by 𝐵 < 𝐴. 
 

Example 2 

Let 𝑋 = {𝑒, 𝑎, 𝑏, 𝑐} be the Klein four-group (with 𝑎𝑏 =
𝑐, 𝑎𝑐 = 𝑏, 𝑏𝑐 = 𝑎, 𝑎2 = 𝑏2 = 𝑐2 = 𝑒), and let 

𝐴 = {𝑒5, 𝑎7, 𝑏6, 𝑐7} 

 

be an antimultigroup over 𝑋. Then the multisets 

 

𝐵 = {𝑒4, 𝑎6, 𝑏5, 𝑐6}, 𝐶 = {𝑒3, 𝑎5, 𝑏4, 𝑐5} 

 

are sub-antimultigroups of 𝐴. 

Since both 𝐵 and 𝐶 are strictly contained in 𝐴, they are 

also proper sub-antimultigroups of 𝐴; that is, 

𝐵 < 𝐴 and 𝐶 < 𝐴 

 

Definition 8 Let 𝐴 ∈ 𝐴ℳ𝐺(𝑋) and 𝑛 ∈ ℕ. The 

following subsets are defined as follows: 
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1. The strong upper cut of 𝐴 at level 𝑛 is: 

 

𝐴[𝑛] = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) < 𝑛}. 

 

2. The weak upper cut of 𝐴 at level 𝑛 is: 

 

𝐴(𝑛) = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) ≤ 𝑛}. 

 

3. The strong lower cut of 𝐴 at level 𝑛 is: 

 

𝐴[𝑛] = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) ≥ 𝑛}. 
 

4. The weak lower cut of 𝐴 at level 𝑛 is: 

 

𝐴(𝑛) = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) > 𝑛}. 
 

Proposition 4 (Sub-antimultigroup Property of Cuts); 

Let 𝐴 ∈ 𝐴ℳ𝐺(𝑋) and 𝑛 ∈ ℕ. Then 𝐴[𝑛], 𝐴(𝑛), 𝐴[𝑛] and 

𝐴(𝑛) are sub-antimultigroups of 𝐴. 

 

Proof. 

Let 𝐶 be any of the four cuts above with induced 

multiplicities from 𝐴: that is, 

𝑚𝐶(𝑥) = {
𝑚𝐴(𝑥),            if 𝑥 ∈ 𝐶        
0,                      otherwise   

 

 

We now verify that 𝐶 ∈ 𝐴𝑀𝐺(𝑋): 
 

1. Inverse symmetry: 

For all 𝑥 ∈ 𝑋: 
Since 𝐴 ∈ 𝐴𝑀𝐺(𝑋), we have 𝑚𝐴(𝑥−1) = 𝑚𝐴(𝑥). Then 

for each 𝐶, 𝑥 ∈ 𝑚𝐴(𝑥) satisfies some inequality involving 

𝑛 ⟺ 𝑚𝐴(𝑥−1) satisfies the same. Hence, 𝑥 ∈ 𝐶 ⟺ 𝑥−1 ∈
𝐶, so 𝑚𝐶(𝑥−1) = 𝑚𝐶(𝑥) 

 

2. Antimultiplicative inequality: 

For all 𝑥, 𝑦 ∈ 𝑋: 

𝑚𝐶(𝑥𝑦) ≤ 𝑚𝐶(𝑥) ∨ 𝑚𝐶(𝑦). 
 

This holds because 𝑚𝐶(𝑧) ≤ 𝑚𝐴(𝑧) for all 𝑧, and 𝐴 

satisfies the antimultigroup inequality: 

 

𝑚𝐴(𝑥𝑦) ≤ 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦). 
So if 𝑥𝑦 ∈ 𝐶, then:  

 

𝑚𝐶(𝑥𝑦) = 𝑚𝐴(𝑥𝑦) ≤ 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦). 
 

But since 𝑚𝐶(𝑥) ≤ 𝑚𝐴(𝑥), 𝑚𝐶(𝑦) ≤ 𝑚𝐴(𝑦), the right-

hand side is at least 𝑚𝐶(𝑥) ∨ 𝑚𝐶(𝑦), so the inequality 

holds. 

 

Proposition 5 (Ibrahim and Awolola, 2023) 

Let 𝐴 ∈ 𝐴ℳ𝐺(𝑋). Then the sets 𝐴∗ = {𝑥 ∈ 𝑋 |𝑚𝐴(𝑥) =
𝑚𝐴(𝑒)} and 𝐴∗ = {𝑥 ∈ 𝑋 |𝑚𝐴(𝑥) > 0}. 

Proposition 6. Let 𝐴, 𝐵 ∈ 𝐴ℳ𝐺(𝑋) with 𝐴 ⊆ 𝐵. 

Assume that the normality condition is given in the 

stronger form:  

𝑚𝐴(𝑥𝑦𝑥−1) = 𝑚𝐴(𝑦) ∀𝑥, 𝑦 ∈ 𝑋. 
Then the following statements are equivalent: 

 

i.      𝐴 is a normal sub-antimultigroup of 𝐵. 

ii.     𝑚𝐴(𝑥𝑦𝑥−1) = 𝑚𝐴(𝑦) ∀𝑥, 𝑦 ∈ 𝑋. 

iii.   𝑚𝐴(𝑥𝑦) = 𝑚𝐴(𝑦𝑥) ∀𝑥, 𝑦 ∈ 𝑋. 

 

Proof. 

(i) ⇒ (ii) 
This follows directly from the assumption that 

normality is defined by equality, i,e, 

 

𝑚𝐴(𝑥𝑦𝑥−1) = 𝑚𝐴(𝑦) ∀𝑥, 𝑦 ∈ 𝑋. 
Hence, (i) implies (ii). 

 

(ii) ⇒ (iii) 
Assume 

𝑚𝐴(𝑥𝑦𝑥−1) = 𝑚𝐴(𝑦) ∀𝑥, 𝑦 ∈ 𝑋. 
 

Let 𝑥, 𝑦 ∈ 𝑋. Multiply both sides on the right by 𝑥, so 

 

𝑥𝑦𝑥−1𝑥 = 𝑥𝑦. 
 

On the other hand, let 𝑦𝑥 = 𝑥−1𝑥𝑦𝑥. Since 𝐴 ⊆ 𝐵 ∈
𝐴ℳ𝐺(𝑋), the multiplicities are preserved under such 

transformations (this is assumed or can be derived in 

an associative multigroup). Hence, using the equality 

condition repeatedly yields: 

 

𝑚𝐴(𝑥𝑦) = 𝑚𝐴(𝑦𝑥) 

 

Thus, (ii) implies (iii). 

 

(iii) ⇒ (i) 
Assume  
 
𝑚𝐴(𝑥𝑦) = 𝑚𝐴(𝑦𝑥) ∀𝑥, 𝑦 ∈ 𝑋 

 

and that 𝐴 ⊆ 𝐵, We aim to show that  

 

𝑚𝐴(𝑥𝑦𝑥−1) = 𝑚𝐴(𝑦) ∀𝑥, 𝑦 ∈ 𝑋 

 

Let 𝑥, 𝑦 ∈ 𝑋. Then: 

 

𝑚𝐴(𝑥𝑦𝑥−1) = 𝑚𝐴(𝑦𝑥−1𝑥) =  𝑚𝐴(𝑦), 
 

Since 𝑥−1𝑥 = 𝑒, the identity, and multigroup 

associativity and identity assumptions give 
 

𝑦𝑥−1𝑥 = 𝑦 and 𝑚𝐴(𝑦𝑥−1𝑥) =  𝑚𝐴(𝑦). 
 

Hence, (iii) implies (ii), and thus all three statements 

are equivalent under the equality assumption. 
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Direct Product of Antimultigroup 

In this section, we introduce the concept of direct product 

in antimultigroup context and we investigate the 

properties of direct product of two antimultigroups. Also, 

we establish some important results with respect to root 

sets and cuts of antimultigroup. 

 

Definition 9. Let 𝑋 and 𝑌 be groups, 𝐴1 ∈ 𝐴ℳ𝐺(𝑋) and 

𝐴2 ∈ 𝐴ℳ𝐺(𝑌). The direct product 𝐴1 × 𝐴2 is a multiset 

over 𝑋 × 𝑌 defined by the function:  

 

𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) = 𝑚𝐴1

(𝑥) ∨ 𝑚𝐴2
(𝑦) ∀𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝑌, 

 

where ∨ denotes the maximum operator. 

 

Example 3 

Let 𝑋 = {𝑒, 𝑎, } with 𝑎2 = 𝑒, and let 𝑌 = {𝑒′, 𝑏, 𝑐, 𝑑} be a 

Klein 4-group where 𝑏2 = 𝑐2 = 𝑑2 = 𝑒′). Define: 

 

𝐴1 = {𝑒1, 𝑎4}, 𝐴2 = {(𝑒′)2, 𝑏5, 𝑐4, 𝑑5}. 
 

Then 𝐴1 ∈ 𝐴ℳ𝐺(𝑋), 𝐴2 ∈ 𝐴ℳ𝐺(𝑌),  and the product 

group is: 

 

𝑋 × 𝑌
= {(𝑒, 𝑒′), (𝑒, 𝑏), (𝑒, 𝑐), (𝑒, 𝑑), (𝑎, 𝑒′), (𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑑)} 

with identity element (𝑒, 𝑒′). 

 

From Definition 9, the direct product is: 

 

𝐴1 × 𝐴2 = {
(𝑒, 𝑒′)2, (𝑒, 𝑏)5, (𝑒, 𝑐)4, (𝑒, 𝑑)5, (𝑎, 𝑒′)4,

(𝑎, 𝑏)5, (𝑎, 𝑐)4, (𝑎, 𝑑)5 }. 

 

This is an antimultigroup over 𝑋 × 𝑌, satisfying the 

antimultigroup conditions from Definition 5. 

 

Remark 1. 

Note that the total multiplicity of 𝐴1 × 𝐴2 satisfies: 

|𝐴1 × 𝐴2| = ∑ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦))

(𝑥,𝑦)∈𝑋×𝑌

< (∑ 𝑚𝐴1
(𝑥)

𝑥∈𝑋

) . (∑ 𝑚𝐴2
(𝑦)

𝑦∈𝑌

)

= |𝐴1|. |𝐴2| 
 

This is different from the classical group case, where the 

cardinality of the direct product is the product of the 

cardinalities. 

 

Proposition 7: Let 𝐴1 ∈ 𝐴ℳ𝐺(𝑋) and 𝐴2 ∈ 𝐴ℳ𝐺(𝑌) 

and 𝐴1 × 𝐴2 ∈ ℳ𝐺(𝑋 × 𝑌). Then for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 

the following hold: 

i.𝑚𝐴1× 𝐴2
((𝑥−1, 𝑦−1)) = 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)) 

ii.𝑚𝐴1× 𝐴2
((𝑒, 𝑒′)) ≤ 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)) 

iii.𝑚𝐴1× 𝐴2
((𝑥, 𝑦)𝑛) ≤ 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)), for all 𝑛 ∈ ℕ. 

 

Proof: 

Let (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

(i) 𝑚𝐴1× 𝐴2
((𝑥−1, 𝑦−1)) = 𝑚𝐴1

(𝑥−1) ∨

𝑚𝐴2
(𝑦−1) 

= 𝑚𝐴1
(𝑥)

∨ 𝑚𝐴2
(𝑦−1)      (by antimultigroup property) 

= 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) 

 

(ii) 𝑚𝐴1×𝐴2
((𝑒, 𝑒′)) = 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)(𝑥−1, 𝑦−1)) 

≤ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) ∨ 𝑚𝐴1× 𝐴2

((𝑥−1, 𝑦−1)) 

= 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) ∨ 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)) 

= 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) 

(iii) We prove by induction that for all 𝑛 ∈ ℕ, 

𝑚𝐴1× 𝐴2
((𝑥, 𝑦)𝑛) = 𝑚𝐴1×𝐴2

((𝑥𝑛, 𝑦𝑛))

≤ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)). 

Base case 𝑛 = 1: 

𝑚𝐴1×𝐴2
((𝑥, 𝑦)1) = 𝑚𝐴1×𝐴2

((𝑥𝑛 , 𝑦𝑛))

≤ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)). 

Inductive steps: Suppose 

𝑚𝐴1×𝐴2
((𝑥, 𝑦)𝑘) ≤ 𝑚𝐴1×𝐴2

((𝑥, 𝑦)) for some 𝑘 ∈ ℕ. 

We want to show that  

𝑚𝐴1×𝐴2
((𝑥, 𝑦)𝑘+1) ≤ 𝑚𝐴1×𝐴2

((𝑥, 𝑦)). 

Now: 𝑚𝐴1×𝐴2
((𝑥, 𝑦)𝑘+1) = 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)𝑘(𝑥, 𝑦)) 

≤ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)𝑘) ∨ 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)) 

≤ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) ∨ 𝑚𝐴1× 𝐴2

((𝑥, 𝑦)) 

≤ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)). 

 

Proposition 8: Let 𝐴1, 𝐵1 ∈ 𝐴𝑀𝐺(𝑋) and 𝐴2, 𝐵2 ∈
𝐴𝑀𝐺(𝑌) and 𝑚, 𝑛 ∈ ℕ. Then: 

i.(𝐴1 × 𝐴2)[𝑛] ⊆ (𝐴1 × 𝐴2)[𝑚] if and only if 𝑛 ≤ 𝑚, 

ii.𝐴1 × 𝐴2 ⊆ 𝐵1 × 𝐵2 if and only if (𝐴1 × 𝐴2)[𝑛] ⊆

(𝐵1 × 𝐵2)[𝑛]. 

 

Proof. 

(i) Assume (𝑥, 𝑦) ∈ (𝐴1 × 𝐴2)[𝑛]. Then 

 

𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) ≤ 𝑛. 

 

Since 𝑛 ≤ 𝑚, it follows that: 

 

𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) ≤ 𝑚 

 

Hence, (𝐴1 × 𝐴2)[𝑛] ⊆ (𝐴1 × 𝐴2)[𝑚].  

 

Conversely, if (𝐴1 × 𝐴2)[𝑛] ⊆ (𝐴1 × 𝐴2)[𝑚] it is clear 

that 𝑛 ≤ 𝑚. 

 

(ii) Suppose 𝐴1 × 𝐴2 ⊆ 𝐵1 × 𝐵2 . Then: 
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𝑚𝐴1×𝐴2
((𝑥, 𝑦)) ≤ 𝑚𝐵1× 𝐵2

((𝑥, 𝑦)) ∀(𝑥, 𝑦) 

 

So if (𝑥, 𝑦) ∈ (𝐴1 × 𝐴2)[𝑛], then:  

 

𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) ≤ 𝑛 ⟹ 𝑚𝐵1× 𝐵2

((𝑥, 𝑦)) ≤ 𝑛. 

 

  Thus, (𝑥, 𝑦) ∈ (𝐵1 × 𝐵2)[𝐵]. 

 

The converse is straightforward. 

Since 

𝐴1 × 𝐴2 ⊆ 𝐵1 × 𝐵2 ⇒ 𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) ≤

𝑚𝐵1× 𝐵2
((𝑥, 𝑦)) ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

For (𝑥, 𝑦) ∈ (𝐴1 × 𝐴2)[𝑛] and (𝑥, 𝑦) ∈ (𝐵1 × 𝐵2)[𝑛] 

⇒ 𝑚𝐴1× 𝐴2
(𝑥, 𝑦) ≤ 𝑚𝐵1× 𝐵2

(𝑥, 𝑦) ≤ 𝑛.  

So, 𝐴1 × 𝐴2 ⊆ 𝐵1 × 𝐵2. 

The converse is straightforward. 

 

Remark 2: Let 𝐴1, 𝐵1 ∈ 𝐴𝑀𝐺(𝑋) and 𝐴2, 𝐵2 ∈ 𝐴𝑀𝐺(𝑌) 

and 𝑚, 𝑛 ∈ ℕ. Then: 

i.(𝐴1 × 𝐴2)[𝑛] ⊆ (𝐴1 × 𝐴2)[𝑚]  

               if and only if 𝑛 ≥ 𝑚, 

ii.𝐴1 × 𝐴2 ⊆ 𝐵1 × 𝐵2 

               if and only if (𝐴1 × 𝐴2)[𝑛] ⊆ (𝐵1 × 𝐵2)[𝑛]. 

 

Theorem 1: Let 𝐴1 ∈ 𝐴𝑀𝐺(𝑋) and 𝐴2 ∈ 𝐴𝑀𝐺(𝑌) 

respectively. Then for all 𝑛 ∈ ℕ,  

 

(𝐴1 × 𝐴2)[𝑛] = 𝐴1[𝑛] × 𝐴2[𝑛]. 

. 

Proof. 

Let (𝑥, 𝑦) ∈ (𝐴1 × 𝐴2)[𝑛]. From definition 9 we have, 

 

𝑚𝐴1×𝐴2
((𝑥, 𝑦)) = (𝑚𝐴1

(𝑥) ∨ 𝑚𝐴2
(𝑦)) ≤ 𝑛. 

 

This implies that 𝑚𝐴1
(𝑥) ≤ 𝑛 and 𝑚𝐴2

(𝑦) ≤ 𝑛, hence 

𝑥 ∈ 𝐴1[𝑛] and 𝑦 ∈ 𝐴2[𝑛], so 

 

(𝑥, 𝑦) ∈ 𝐴1[𝑛] × 𝐴2[𝑛] 

 

Conversely, let (𝑥, 𝑦) ∈ 𝐴1[𝑛] × 𝐴2[𝑛], i. e, 𝑚𝐴1
(𝑥) ≤ 𝑛 

and 𝑚𝐴2
(𝑦) ≤ 𝑛. Then 

 

𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) = (𝑚𝐴1

(𝑥) ∨ 𝑚𝐴2
(𝑦)) ≤ 𝑛, 

 

which implies that (𝑥, 𝑦) ∈ (𝐴1 × 𝐴2)[𝑛].  

 

Hence, 

(𝐴1 × 𝐴2)[𝑛] = 𝐴1[𝑛] × 𝐴2[𝑛]. 

 

Corollary 1: Let 𝐴1 ∈ 𝐴𝑀𝐺(𝑋) and 𝐴2 ∈ 𝐴𝑀𝐺(𝑌), 

respectively. Then for all 𝑛 ∈ ℕ, (𝐴1 × 𝐴2)[𝑛] =

𝐴1
[𝑛] × 𝐴2

[𝑛]
. 

 

Proof. 

Follows similarly from Theorem 1 using the definition 

of [𝑛] and the fact that 

 

𝑚𝐴1× 𝐴2
((𝑥, 𝑦)) = 𝑚𝐴1

(𝑥) ∨ 𝑚𝐴2
(𝑦) ≥ 𝑛 

 

if and only if 𝑚𝐴1
(𝑥) ≥ 𝑛 and 𝑚𝐴2

(𝑦) ≥ 𝑛. 

 

Corollary 2: Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋) and 𝐵 ∈ 𝐴𝑀𝐺(𝑌), 

respectively. Then 

i.       (𝐴 × 𝐵)∗ = 𝐴∗ × 𝐵∗ 

ii.      (𝐴 × 𝐵)∗ = 𝐴∗ × 𝐵∗ 

 

Proof. 

Follows directly from Theorem 1 by noting that 

𝐴∗ = ⋃ 𝐴[𝑛],

𝑛∈ℕ

𝐴∗ = ⋂ 𝐴∗

𝑛∈ℕ

= 𝐴[𝑛], 

and using the distributivity of Cartesian product over 

union and intersection: 

(𝐴 × 𝐵)∗ = ⋃(𝐴 × 𝐵)[𝑛]

𝑛∈ℕ

= ⋃(𝐴[𝑛] × 𝐵[𝑛]) = 𝐴∗ × 𝐵∗

𝑛∈ℕ

 

(𝐴 × 𝐵)∗ = ⋂(𝐴 × 𝐵)[𝑛]

𝑛∈ℕ

= ⋃(𝐴[𝑛] × 𝐵[𝑛]) = 𝐴∗ × 𝐵∗

𝑛∈ℕ

 

 

Theorem 2: Let 𝐴1 ∈ 𝐴𝑀𝐺(𝑋) and 𝐴2 ∈ 𝐴𝑀𝐺(𝑌). 

Then 𝐴1 × 𝐴2 ∈ 𝐴𝑀𝐺(𝑋 × 𝑌).  

 

Proof. 

Let 𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1 , 𝑦2) ∈ 𝑋 × 𝑌. Then: 

𝑚𝐴1× 𝐴2
(𝑥𝑦) = 𝑚𝐴1×𝐴2

((𝑥1𝑦1, 𝑥2𝑦2)) 

= 𝑚𝐴1× 𝐴2
(𝑥1𝑦1) ∨ 𝑚𝐴1× 𝐴2

(𝑥2𝑦2) 

≤ (𝑚𝐴1
(𝑥1) ∨ 𝑚𝐴1

(𝑦1)) ∨ (𝑚𝐴2
(𝑥2) ∨ 𝑚𝐴2

(𝑦2)) 

= (𝑚𝐴1
(𝑥1) ∨ 𝑚𝐴2

(𝑥2)) ∨ (𝑚𝐴1
(𝑦1) ∨ 𝑚𝐴2

(𝑦2)) 

= 𝑚𝐴1× 𝐴2
(𝑥) ∨ 𝑚𝐴1× 𝐴2

(𝑦), 

using the antimultigroup property of 𝐴1 and 𝐴2, and 

the definition: 

𝑚𝐴1× 𝐴2
((𝑥1, 𝑥2)) = 𝑚𝐴1

(𝑥1) ∨ 𝑚𝐴2
(𝑥2) 

 

Next, we check the inverse condition: 

𝑚𝐴1× 𝐴2
(𝑥−1) = 𝑚𝐴1× 𝐴2

((𝑥1, 𝑥2)−1) 

= 𝑚𝐴1× 𝐴2
((𝑥1

−1, 𝑥2
−1)) 

= 𝑚𝐴1
(𝑥1

−1) ∨ 𝑚𝐴2
(𝑥2

−1) 

= 𝑚𝐴1
(𝑥1) ∨ 𝑚𝐴2

(𝑥2) 
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= 𝑚𝐴1× 𝐴2
(𝑥), 

where we used the antimultigroup inverse condition for 

𝐴1 and 𝐴2. Thus, 𝐴1 × 𝐴2 ∈ 𝐴𝑀𝐺(𝑋 × 𝑌). 

 

Remark 3: 

The proof of Theorem 2 relies critically on the 

preservation of multiplicity structure under the direct 

product. In particular, the identity 

𝑚𝐴1× 𝐴2
((𝑥1, 𝑥2)) = 𝑚𝐴1× 𝐴2

((𝑥1, 𝑥2)−1) 

combined with the truncation identity in Theorem 1: 

(𝐴1 × 𝐴2)[𝑛] = 𝐴1[𝑛] × 𝐴2[𝑛] 

Ensures that both the closure and inverse conditions 

required for an antimultigroup are satisfied in the product 

structure. Hence, Theorem 1 provides structural 

groundwork for Theorem 2. 

 

Corollary 3: Let 𝐴1, 𝐵1 ∈ 𝐴𝑀𝐺(𝑋1) and 𝐴2, 𝐵2 ∈
𝐴𝑀𝐺(𝑋2) such that 𝐴1 ⊆ 𝐵1 and 𝐴2 ⊆ 𝐵2. If 𝐴1 is a 

normal sub-antimultigroup of 𝐵1 and 𝐴2 is a normal sub-

antimultigroup of 𝐵2 then 𝐴1 × 𝐴2 respectively such that 

𝐴1 ⊆ 𝐵1 and 𝐴2 ⊆ 𝐵2. If 𝐴1 and 𝐴2 are normal sub-

antimultigroup of 𝐵1 and 𝐵2, then 𝐴1 × 𝐴2 is a normal 

sub-antimultigroup of  𝐵1 × 𝐵2. 

Proof. 

From theorem 2, the direct product 𝐴1 × 𝐴2 is an 

antimultigroup of 𝑋1 × 𝑋2, and so is 𝐵1 × 𝐵2. Since 𝐴1 ⊆
𝐵1 and 𝐴2 ⊆ 𝐵2, it follows that 

𝐴1 × 𝐴2 ⊆ 𝐵1 × 𝐵2 

To show that 𝐴1 × 𝐴2 is a normal sub-antimultigroup of 

𝐵1 × 𝐵2, let (𝑥1, 𝑥2)(𝑦1, 𝑦2) ∈ 𝑋1 × 𝑋2. Then: 

𝑚𝐴1× 𝐴2
((𝑥1, 𝑥2)(𝑦1, 𝑦2)) = 𝑚𝐴1×𝐴2

((𝑥1𝑦1, 𝑥2𝑦2)) 

   = 𝑚𝐴1
(𝑥1𝑦1) ∨ 𝑚𝐴2

(𝑥2𝑦2) 

= 𝑚𝐴1
(𝑦1𝑥1) ∨ 𝑚𝐴2

(𝑦2𝑥2) (since𝐴1 ⊴ 𝐵1, 𝐴2 ⊴ 𝐵2 

= 𝑚𝐴1×𝐴2
((𝑦1𝑥1, 𝑦2𝑥2)) 

= 𝑚𝐴1×𝐴2
((𝑦1, 𝑦2)(𝑥1, 𝑥2)) 

Thus, 

𝑚𝐴1× 𝐴2
((𝑥1, 𝑥2)(𝑦1 , 𝑦2)) = 𝑚𝐴1× 𝐴2

((𝑦1, 𝑦2)(𝑥1, 𝑥2)) 

which means 𝐴1 × 𝐴2 satisfies the normality condition in 

𝐵1 × 𝐵2. Therefore, by Proposition 6 

𝐴1 × 𝐴2 ⊴ 𝐵1 × 𝐵2. 

 

Theorem 3: Let 𝐴1 and 𝐴2 be antimultigroups of 𝑋 and 

𝑌, respectively. Then  

i.(𝐴1 × 𝐴2)∗ is a sub-antimultigroup of 𝑋 × 𝑌. 

ii.(𝐴1 × 𝐴2)∗ is a sub-antimultigroup of 𝑋 × 𝑌. 

iii.(𝐴1 × 𝐴2)[𝑛], 𝑛 ∈ ℕ is a sub-antimultigroup of       𝑋 ×

𝑌, ∀ 𝑛 ≥ 𝑚𝐴1×𝐴2
(𝑒, 𝑒′). 

iv.(𝐴1 × 𝐴2)[𝑛], 𝑛 ∈ ℕ is a sub-antimultigroup of 𝑋 ×
𝑌, ∀ 𝑛 ≤ 𝑚𝐴1×𝐴2

(𝑒, 𝑒′). 

Proof. 

From Theorem 2, the direct product 𝐴1 × 𝐴2 is an 

antimultigroup of 𝑋 × 𝑌. Therefore the associated 

multiplicity function satisfies the antimultigroup 

axioms on the product group 𝑋 × 𝑌. 

Now we apply the following results: 

 From Proposition 5, for any antimultigroup 

𝐴 ∈ 𝐴𝑀𝐺(𝐺), the 𝐴∗ and 𝐴∗ are sub-antigroups of 𝐺. 

 From Proposition 4, for any 𝑛 ≥ 𝑚𝐴(𝑒), the 

level set 𝐴[𝑛] is a sub-antigroup. 

 From Proposition 4, for any 𝑛 ≤ 𝑚𝐴(𝑒), the 

upper level set 𝐴[𝑛] is a sub-antigroup 

Applying these directly to 𝐴1 × 𝐴2 ∈ 𝐴𝑀𝐺(𝑋 × 𝑌), we 

conclude: 

 (𝐴1 × 𝐴2)∗ and (𝐴1 × 𝐴2)∗ are sub-antigroups 

of 𝑋 × 𝑌. 

 (𝐴1 × 𝐴2)[𝑛] ⊆ 𝑋 × 𝑌 is a sub-antigroup for 

all 𝑛 ≥ 𝑚𝐴1× 𝐴2
(𝑒, 𝑒′). 

(𝐴1 × 𝐴2)[𝑛] ⊆ 𝑋 × 𝑌 is a sub-antigroup for all  𝑛 ≤
𝑚𝐴1× 𝐴2

(𝑒, 𝑒′). 

 

RESULTS AND DISCUSSION 

Union and Intersection of Cuts of Direct Product of 

Antimultigroup 

Proposition 9: Let 𝐶 = 𝐴1 × 𝐴2 and 𝐷 = 𝐵1 × 𝐵2, 

where 𝐶, 𝐷 ∈ 𝐴𝑀𝐺(𝑋 × 𝑌) and 𝑛 ∈ ℕ. Then: 

i.(𝐶 ∩ 𝐷)[𝑛] = 𝐶[𝑛] ∩ 𝐷[𝑛]. 

ii.(𝐶 ∪ 𝐷)[𝑛] = 𝐶[𝑛] ∪ 𝐷[𝑛]. 

 

Proof. 

(i) 𝐶, 𝐷 ∈ 𝐴𝑀𝐺(𝑋 × 𝑌), we have 𝐶 ∩ 𝐷 ⊆ 𝐶 and 

𝐶 ∩ 𝐷 ⊆ 𝐷. By Proposition 10 for any sub-

antimultigroup 𝐴 ⊆ 𝐵, it follows that 𝐴[𝑛] = 𝐵[𝑛]. 

Therefore, 

 

(𝐶 ∪ 𝐷)[𝑛] = 𝐶[𝑛] and (𝐶 ∪ 𝐷)[𝑛] = 𝐷[𝑛]

⟹ (𝐶 ∩ 𝐷)[𝑛] ⊆ 𝐶[𝑛] ∩ 𝐷[𝑛]. 

 

Now let (𝑥, 𝑦) ∈ 𝐶[𝑛] ∩ 𝐷[𝑛], then 

 

𝑚𝐶(𝑥, 𝑦) ≤ 𝑛 and𝑚𝐷(𝑥, 𝑦) ≤ 𝑛. 
 

By definition of intersection of multiplicities: 

 

𝑚𝐶∩𝐷(𝑥, 𝑦) = 𝑚𝐶(𝑥, 𝑦) ∧ 𝑚𝐷(𝑥, 𝑦) ≤ 𝑛. 
 

Hence, (𝑥, 𝑦) ∈ (𝐶 ∩ 𝐷)[𝑛] and so 

 

𝐶[𝑛] ∩ 𝐷[𝑛] ⊆ (𝐶 ∩ 𝐷)[𝑛]. 

 

Thus,  

(𝐶 ∩ 𝐷)[𝑛] = 𝐶[𝑛] ∩ 𝐷[𝑛]. 
 

(ii) Since 𝐶 ⊆ 𝐶 ∪ 𝐷 and 𝐷 ⊆ 𝐶 ∪ 𝐷, again by 

Proposition 10, we get: 
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𝐶[𝑛] ⊆ (𝐶 ∪ 𝐷)[𝑛] and 𝐷[𝑛] ⊆ (𝐶 ∪ 𝐷)[𝑛] ⟹ 𝐶[𝑛] ∪ 𝐷[𝑛]

⊆ (𝐶 ∪ 𝐷)[𝑛]. 

 

Now take (𝑥, 𝑦) ∈ (𝐶 ∪ 𝐷)[𝑛]. Then 

 

𝑚𝐶∪𝐷(𝑥, 𝑦) = 𝑚𝐶(𝑥, 𝑦) ∨ 𝑚𝐷(𝑥, 𝑦) ≤ 𝑛 ⟹ 𝑚𝐶(𝑥, 𝑦)
≤ 𝑛 or𝑚𝐷(𝑥, 𝑦) ≤ 𝑛. 

 

So (𝑥, 𝑦) ∈ 𝐶[𝑛] or (𝑥, 𝑦) ∈ 𝐷[𝑛] ⟹ (𝑥, 𝑦) ∈ 𝐶[𝑛] ∪ 𝐷[𝑛]. 
 

Therefore, 

 

(𝐶 ∪ 𝐷)[𝑛] ⊆ 𝐶[𝑛] ∪ 𝐷[𝑛]. 

 

Combining both inclusions: 

 

(𝐶 ∪ 𝐷)[𝑛] = 𝐶[𝑛] ∪ 𝐷[𝑛]. 

 

Proposition 10: Let 𝐶 = 𝐴1 × 𝐴2 and 𝐷 = 𝐵1 × 𝐵2 such 

that 𝐶, 𝐷 ∈ 𝐴𝑀𝐺(𝑋 × 𝑌). If 𝐶[𝑛] and 𝐷[𝑛] are sub-

antimultigroups of 𝑋 × 𝑌, then (𝐶 ∩ 𝐷)[𝑛] is also a sub-

antimultigroup of 𝑋 × 𝑌. 

 

Proof. 

Let (𝑒, 𝑒′) denote the identity in 𝑋 × 𝑌. Since (𝑒, 𝑒′) ∈
𝐶[𝑛] and (𝑒, 𝑒′) ∈ 𝐷[𝑛], by the sub-antimultigroup property 

and the definition of the cuts we have: 

 

𝑚𝐶((𝑒, 𝑒 ′)) ≤ 𝑛 and𝑚𝐷((𝑒, 𝑒 ′)) ≤ 𝑛. 

 

Moreover, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌, the values 

𝑚𝐶((𝑥, 𝑦)) ≤ 𝑛 and𝑚𝐷((𝑥, 𝑦)) ≤ 𝑛 hold on these cuts. 

Recall that by assumption 𝐶[𝑛] and 𝐷[𝑛] are sub-

antimultigroups of 𝑋 × 𝑌. Hence, their intersection  

 

𝐶[𝑛] ∩ 𝐷[𝑛] 

 

Is also a sub-antimultigroup of 𝑋 × 𝑌 since the 

intersection of sub-antimultigroups is a sub-

antimultigroup. By Proposition 9, we know that 

 

(𝐶 ∩ 𝐷)[𝑛] = 𝐶[𝑛] ∩ 𝐷[𝑛]. 

 

Therefore, 

(𝐶 ∩ 𝐷)[𝑛] 

is a sub-antimultigroup of 𝑋 × 𝑌. 

 

Corollary 4: Let 𝐶 = 𝐴1 × 𝐴2 and 𝐷 = 𝐵1 × 𝐵2 such 

that 𝐶, 𝐷 ∈ 𝐴𝑀𝐺(𝑋 × 𝑌). If 𝐶[𝑛] and 𝐷[𝑛] are sub-

antimultigroups of 𝑋 × 𝑌,  then (𝐶 ∪ 𝐷)[𝑛] is a sub-

antimultigroup of  𝑋 × 𝑌 provided that 𝐶 ⊆ 𝐷. 

 

 

Proof. 

By Theorem 2, both 𝐶[𝑛] and 𝐷[𝑛] are sub-

antimultigroups of 𝑋 × 𝑌. Assume 𝐶 ⊆ 𝐷. Then, by 

Proposition 8, we have  

 

𝐶[𝑛] ⊆ 𝐷[𝑛]. 
 

Therefore, the union of these cuts simplifies to  

 

𝐶[𝑛] ∪ 𝐷[𝑛] = 𝐷[𝑛]. 

 

Since 𝐷[𝑛] is a sub-antimultigroup of 𝑋 × 𝑌, it follows 

that 

 

𝐶[𝑛] ∪ 𝐷[𝑛] 

 

Is a sub-antimultigroup of  𝑋 × 𝑌. 

 

From Proposition 9, we know that 

 

(𝐶 ∪ 𝐷)[𝑛] = 𝐶[𝑛] ∪ 𝐷[𝑛] 

 

Hence,  

 

(𝐶 ∪ 𝐷)[𝑛] 

 

is a sub-antimultigroup of 𝑋 × 𝑌. 

 

CONCLUSION 

This paper has developed the theory of direct products 

in the context of antimultigroups, thereby extending the 

classical structure from group theory to multiset-based 

antimultigroups. We have introduced the direct product 

of antimultigroups and demonstrated that the direct 

product of two antimultigroups is itself an 

antimultigroup. 

In addition to the results, we have examined sub-

antimultigroups induced by various types of cuts—

strong and weak, upper and lower—and investigated 

their preservation under union and intersection. We 

further explored the behavior of root sets in product 

spaces by showing how their properties are inherited or 

transformed under product operations. 

With this contributions, the foundational aspects of 

antimultigroup theory is solidified and some  

promising research directions are opened up. One such 

direction is the study of homomorphisms in the setting 

of direct products, including characterizations of kernel 

structures, image preservation, and the conditions 

under which factor antimultigroups may be recovered. 

Another prospective area involves embedding of 

antimultigroups, thereby linking them to broader 

algebraic structures. 
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